Phân hủy resorcinol bởi giống Penicillium chrysogenum dưới áp lực thẩm thấu: ma trận cơ chất đơn và đôi với phenol

Biodegradation - Tập 22 - Trang 409-419 - 2010
Sumaya Ferreira Guedes1, Benilde Mendes1, Ana Lúcia Leitão1
1UBiA, Grupo de Ecologia da Hidrosfera, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Caparica, Portugal

Tóm tắt

Một giống Penicillium chrysogenum phân hủy phenol đã được tách lập trước đó từ một mỏ muối có khả năng phát triển ở nồng độ 1.000 mg l−1 resorcinol trên môi trường rắn. Quá trình phân hủy sinh học resorcinol của giống P. chrysogenum CLONA2 đã được nghiên cứu trong các nền văn hóa lô bằng môi trường khoáng tối thiểu với 58,5 g l−1 natri clorua, sử dụng resorcinol như nguồn cacbon duy nhất. Giống nấm này thể hiện khả năng phân hủy lên đến 250 mg l−1 resorcinol. Khả năng phân hủy resorcinol và phenol bởi P. chrysogenum CLONA2 đã được so sánh. Giống này loại bỏ phenol nhanh hơn so với resorcinol. Khi phenol và resorcinol có mặt trong các ma trận cơ chất đôi, phenol đã tăng cường sự phân hủy resorcinol, và tải lượng hữu cơ đã giảm so với các ma trận cơ chất đơn. Độc tính cấp tính của phenol và resorcinol, cả riêng lẻ và kết hợp, đối với ấu trùng Artemia franciscana đã được xác nhận trước và sau quá trình cải tạo sinh học với P. chrysogenum CLONA2. Quá trình cải tạo là hiệu quả trong cả hệ thống cơ chất đơn và đôi.

Từ khóa

#Penicillium chrysogenum #resorcinol #phenol #phân hủy sinh học #độc tính #cải tạo môi trường

Tài liệu tham khảo

Ahmaruzzaman M (2008) Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv Colloid Interface Sci 143:48–67 Azevedo EB, Aquino de Neto FR, Dezotti M (2006) Lumped kinetics and acute toxicity of intermediates in the ozonation of phenol in saline media. J Hazard Mater 128:182–191 Bastos AE, Moon DH, Rossi A, Trevors JT, Tsai SM (2000) Salt-tolerant phenol-degrading microorganisms isolated from Amazonian soil samples. Arch Microbiol 174:346–352 Bayram E, Hoda N, Ayranci E (2009) Adsorption/electrosorption of catechol and resorcinol onto high area activated carbon cloth. J Hazard Mater 168:1459–1466 Blanco-Martinez DA, Giraldo L, Moreno-Pirajan JC (2009) Effect of the pH in the adsorption and in the immersion enthalpy of monohydroxylated phenols from aqueous solutions on activated carbons. J Hazard Mater 169:291–296 Busca G, Berardinelli S, Resini C, Arrighi L (2008) Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater 160:265–288 Chang Chien SW, Chen HL, Wang MC, Seshaiah K (2009) Oxidative degradation and associated mineralization of catechol, hydroquinone and resorcinol catalyzed by birnessite. Chemosphere 74:1125–1133 Chen H, Yao J, Wang F, Choi MM, Bramanti E, Zaray G (2009) Study on the toxic effects of diphenol compounds on soil microbial activity by a combination of methods. J Hazard Mater 167:846–851 Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R & D. J Chem Technol Biotechnol 83:769–776 do Ceu Silva M, Gaspar J, Silva ID, Leao D, Rueff J (2003) Induction of chromosomal aberrations by phenolic compounds: possible role of reactive oxygen species. Mutat Res 540:29–42 Ena A, Pintucci C, Faraloni C, Torzillo G (2009) An eco-compatible process for the depuration of wastewater from olive mill industry. Water Sci Technol 60:1055–1063 Fialová A, Boschke E, Bley T (2004) Rapid monitoring of the biodegradation of phenol-like compounds by the yeast Candida maltosa using BOD measurements. Int Biodeterior Biodegrad 54:69–76 Gaal A, Neujahr HY (1979) Metabolism of phenol and resorcinol in Tricosporon cutaneum. J Bacteriol 137:13–21 Godbole A, Chakrabarti T (1991) Biodegradation in upflow anoxic fixed film-fixed bed reactors of resorcinol, catechol and phenol in mono and binary substrates matrices. Water Res 25:1113–1120 Godsy EM, Goerlitz DF, Grbié-Galié D (1992) Methanogenic biodegradation of creosote contaminants in natural and simulated ground-water ecosystems. Ground Water 30:232–242 Guerra R (2001) Ecotoxicological and chemical evaluation of phenolic compounds in industrial effluents. Chemosphere 44:1737–1747 Gunther K, Schlosser D, Fritsche W (1995) Phenol and cresol metabolism in Bacillus pumilus isolated from contaminated groundwater. J Basic Microbiol 35:83–92 Hamed TA, Bayraktar E, Mehmetoglu T, Mehmetoglu U (2003) Substrate interactions during the biodegradation of benzene, toluene and phenol mixtures. Process Biochem 30:27–35 Hinteregger C, Streichsbier F (1997) Halomonas sp., a moderately halophilic strain, for biotreatment of saline phenolic waste-water. Biotechnol Lett 19:1099–1102 Ivey FD, Hodge PN, Turner GE, Borkovich KA (1996) The G alpha i homologue gna-1 controls multiple differentiation pathways in Neurospora crassa. Mol Biol Cell 7:1283–1297 Jiang Y, Zhu X, Li H, Ni J (2010) Effect of nitro substituent on electrochemical oxidation of phenols at boron-doped diamond anodes. Chemosphere 78:1093–1099 Kahru A, Pollumaa L, Reiman R, Ratsep A, Liiders M, Maloveryan A (2000) The toxicity and biodegradability of eight main phenolic compounds characteristic to the oil-shale industry wastewaters: a test battery approach. Environ Toxicol 15:431–442 Kahru A, Maloverjan A, Sillak H, Pollumaa L (2002) The toxicity and fate of phenolic pollutants in the contaminated soils associated with the oil-shale industry. Environ Sci Pollut Res Int Spec No 1:27–33 Kaiser KLE, Palabrica VS (1991) Photobacterium phosphoreum toxicity data index. Water Pollutant Res J Can 26:361–431 Kamath AV, Vaidyanathan CS (1990) New pathway for the biodegradation of indole in Aspergillus niger. Appl Environ Microbiol 56:275–280 Kangsepp P, Mathiasson L, Martensson L (2009) Filter-based treatment of leachate from an industrial landfill containing shredder residues of end-of-life vehicles and white goods. Waste Manag 30:236–245 Kargi F, Dinçer AR (1999) Salt inhibition effects in biological treatment of saline wastewater in RBC. J Environ Eng 125:966–971 Keith LH, Telliard WA (1979) Priority pollutants. I. A prespective view. Environ Sci Technol 13:416–423 Krug M, Ziegler H, Straube G (1985) Degradation of phenolic compounds by the yeast Candida tropicalis HP 15. I. Physiology of growth and substrate utilization. J Basic Microbiol 25:103–110 Kumaran P, Paruchuri YL (1997) Kinetics of phenol biotransformation. Water Res 31:11–22 Kurtz AM, Crow SA Jr (1997) Transformation of chlororesorcinol by the hydrocarbonoclastic yeasts Candida maltosa, Candida tropicalis, and Trichosporon oivide. Curr Microbiol 35:165–168 Lam SW, Chiang K, Lim TM, Amal R, Low GK-C (2005) The role of ferric ion in the photochemical and photocatalytic oxidation of resorcinol. J Catal 234:292–299 Latkar M, Chakrabarti T (1994) Resorcinol, catechol and hydroquinone biodegradation in mono and binary substrate matrices in upflow anaerobic fixed-film fixed-bed reactors. Water Res 28:599–607 Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682 Leitão AL (2009) Potential of Penicillium species in the bioremediation field. Int J Environ Res Public Health 6:1393–1417 Leitão AL, Duarte MP, Oliveira JS (2007) Degradation of phenol by a halotolerant strain Penicillium chrysogenum. Int Biodeterior Biodegrad 59:220–225 Leonard D, Lindley ND (1998) Carbon and energy flux constrains in continuos cultures of Alcaligenes eutrophus grown on phenol. Microbiology 144:241–248 Mahamuni NN, Pandit AB (2006) Effect of additives on ultrasonic degradation of phenol. Ultrason Sonochem 13:165–174 Margesin R, Bergauer P, Gander S (2004) Degradation of phenol and toxicity of phenolic compounds: a comparison of cold-tolerant Arthrobacter sp. and mesophilic Pseudomonas putida. Extremophiles 8:201–207 Maskow T, Kleinsteuber S (2004) Carbon and energy fluxes during haloadaptation of Halomonas sp. EF11 growing on phenol. Extremophiles 8:133–141 Nasr B, Abdellatif G, Canizares P, Saez C, Lobato J, Rodrigo MA (2005) Electrochemical oxidation of hydroquinone, resorcinol, and catechol on boron-doped diamond anodes. Environ Sci Technol 39:7234–7239 Ngugi DK, Tsanuo MK, Boga HI (2005) Rhodococcus opacus strain RW, a resorcinol-degrading bacterium from the gut of Macrotermes michaelseni. Afr J Biotechnol 4:639–645 Othmer K (1995) Encyclopedia of chemical technology. Wiley-Interscience Publisher, New York Pardeshi SK, Patil AB (2009) Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide. J Hazard Mater 163:403–409 Persoone G (1992) Cyst-based toxicity tests. VI: Toxkits and Fluotox tests as cost-effective tools for routine toxicity screening. Schriftenr Ver Wasser Boden Lufthyg 89:563–575 Rodriguez E, Encinas A, Masa FJ, Beltran FJ (2008) Influence of resorcinol chemical oxidation on the removal of resulting organic carbon by activated carbon adsorption. Chemosphere 70:1366–1374 Rustemeier K, Stabbert R, Haussmann HJ, Roemer E, Carmines EL (2002) Evaluation of the potential effects of ingredients added to cigarettes. Part 2: chemical composition of mainstream smoke. Food Chem Toxicol 40:93–104 Welsch F (2008) Routes and modes of administration of resorcinol and their relationship to potential manifestations of thyroid gland toxicity in animals and man. Int J Toxicol 27:59–63 Yao RS, Sun M, Wang CL, Deng SS (2006) Degradation of phenolic compounds with hydrogen peroxide catalyzed by enzyme from Serratia marcescens AB 90027. Water Res 40:3091–3098