Resonant four-photon photoemission from SnSe2(001)

Frontiers of Physics - Tập 19 - Trang 1-10 - 2023
Chengxiang Jiao1, Kai Huang1, Hongli Guo2, Xingxia Cui1, Qing Yuan1, Cancan Lou1, Guangqiang Mei1, Chunlong Wu3, Nan Xu3, Limin Cao1, Min Feng1,3
1School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan, China
2Department of Physics and Astronomy, California State University Northridge, Northridge, USA
3Institute for Advanced Study, Wuhan University, Wuhan, China

Tóm tắt

High-order nonlinear multiphoton absorption is usually inefficient, but can be enhanced by designing resonant excitations between occupied and unoccupied energy levels. We conducted angle-resolved multi-photon photoemission (mPPE) studies on the SnSe2(001) surfaces excited by ultrashort laser pulses. By tuning photon energy and light polarization, we demonstrate the presence of a resonant four-photon photoemission (4PPE) process involving the occupied valence band (VB), the unoccupied second conduction band (CB2) and the unoccupied image-potential state (IPs) of SnSe2. In this 4PPE process, VB electrons of SnSe2 are resonantly excited into CB2 by adsorbing two photons, followed by the adsorption of another photon to populate the n = 1 IPs before being emitted out to the vacuum by adsorbing one more photon. This results in a double-resonant 4PPE process, which exhibits approximately a 40 times enhancement in photoemission yields compared to cases where one of the resonant pathways, CB2 → IPs, is inhibited by involving a virtual state instead of the IPs in the 4PPE. The double-resonant 4PPE process efficiently excite the bulk VB electrons outside the vacuum, like taking advantage of resonant “ladders” through two real empty electronic states of SnSe2. Our results highlight the important applications of mPPE in probing the band-structure, particularly the unoccupied states, of recently emerging main group dichalcogenide semiconductors. Furthermore, the discovered resonant mPPE process contributes to the exploration of their promising optoelectronic applications.

Tài liệu tham khảo

H. Petek and S. Ogawa, Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals, Prog. Surf. Sci. 56(4), 239 (1997) T. Fauster, M. Weinelt, and U. Höfer, Quas-elastic scattering of electrons in image-potential states, Prog. Surf. Sci. 82(4–6), 224 (2007) K. Giesen, F. Hage, F. Himpsel, H. Riess, and W. Steinmann, Two-photon photoemission via image-potential states, Phys. Rev. Lett. 55(3), 300 (1985) R. Schoenlein, J. G. Fujimoto, G. Eesley, and T. Capehart, Femtosecond studies of image-potential dynamics in metals, Phys. Rev. Lett. 61(22), 2596 (1988) C. Waldfried, D. Mcllroy, J. Zhang, P. Dowben, G. Katrich, and E. W. Plummer, Determination of the surface Debye temperature of Mo(112) using valence band photoemission, Surf. Sci. 363(1–3), 296 (1996) F. Bisio, A. Winkelmann, C. Chiang, H. Petek, and J. Kirschner, Band structure effects in above threshold photoemission, J. Phys.: Condens. Matter 33(88), 485002 (2011) A. Winkelmann, W. C. Lin, C. T. Chiang, F. Bisio, H. Petek, and J. Kirschner, Resonant coherent three-photon photoemission from Cu(001), Phys. Rev. B 80(15), 155128 (2009) F. Bisio, M. Nývlt, J. Franta, H. Petek, and J. Kirschner, Mechanisms of high-order perturbative photoemission from Cu(001), Phys. Rev. Lett. 96(8), 087601 (2006) M. Reutzel, A. Li, Z. Wang, and H. Petek, Coherent multidimensional photoelectron spectroscopy of ultrafast quasiparticle dressing by light, Nat. Commun. 11(1), 2230 (2020) Y. Lin, Y. Li, J. T. Sadowski, W. Jin, J. I. Dadap, M. S. Hybertsen, and Osgood, Excitation and characterization of image potential state electrons on quasi-free-standing graphene, Phys. Rev. B 97(16), 165413 (2018) A. A. Ünal, C. Tusche, S. Ouazi, S. Wedekind, C. T. Chiang, A. Winkelmann, D. Sander, J. Henk, and J. Kirschner, Hybridization between the unoccupied Shockley surface state and bulk electronic states on Cu(111), Phys. Rev. B 84(7), 073107 (2011) H. Petek, A. Li, X. Li, S. Tan, and M. Reutzel, Plasmonic decay into hot electrons in silver, Prog. Surf. Sci. 98(3), 100707 (2023) M. Reutzel, A. Li, and H. Petek, Coherent two-dimensional multiphoton photoelectron spectroscopy of metal surfaces, Phys. Rev. X 9(1), 011044 (2019) S. Ogawa and H. Petek, Two-photon photoemission spectroscopy at clean and oxidized Cu(110) and Cu(100) surfaces, Surf. Sci. 363(1–3), 313 (1996) S. Luan, R. Hippler, H. Schwier, and H. Lutz, Electron emission from polycrystalline copper surfaces by multi-photon absorption, Europhys. Lett. 9(5), 489 (1989) W. Fann, R. Storz, and J. Bokor, Observation of above-threshold multiphoton photoelectric emission from image-potential surface states, Phys. Rev. B 44(19), 10980 (1991) S. Irvine, A. Dechant, and A. Elezzabi, Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons, Phys. Rev. Lett. 93(18), 184801 (2004) I. Kinoshita, T. Anazawa, and Y. Matsumoto, Surface and image-potential states on Pt(111) probed by two-and three-photon photoemission, Chem. Phys. Lett. 259(3–4), 445 (1996) J. Kupersztych, P. Monchicourt, and M. Raynaud, Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission, Phys. Rev. Lett. 86(22), 5180 (2001) S. Tan, A. Argondizzo, C. Wang, X. Cui, and H. Petek, Ultrafast multiphoton thermionic photoemission from graphite, Phys. Rev. X 7(1), 011004 (2017) S. Tan, Y. Dai, S. Zhang, L. Liu, J. Zhao, and H. Petek, Coherent electron transfer at the Ag/graphite hetero-junction interface, Phys. Rev. Lett. 120(12), 126801 (2018) S. Tan, L. Liu, Y. Dai, J. Ren, J. Zhao, and H. Petek, Ultrafast plasmon-enhanced hot electron generation at Ag nanocluster/graphite heterojunctions, J. Am. Chem. Soc. 139(17), 6160 (2017) C. A. Formstone, E. T. FitzGerald, D. O’Hare, P. A. Cox, M. Kurmoo, J. W. Hodby, D. Lillicrap, and M. Goss-Custard, Observation of superconductivity in the organometallic intercalation compound SnSe2{Co(η-C5H5)2}0.33, J. Chem. Soc. Chem. Commun. 0(6), 501 (1990) C. A. Formstone, M. Kurmoo, E. T. FitzGerald, P. A. Cox, and D. O’Hare, Single-crystal conductivity study of the tin dichalcogenides SnS2−xSex intercalated with cobaltocene, J. Mater. Chem. 1(1), 51 (1991) D. O’Hare, H. V. Wong, S. Hazell, and J. W. Hodby, Relatively isotropic superconductivity at 8.3 K in the Lamellar organometallic intercalate SnSe2{Co(η-C5H5)2}0.3, Adv. Mater. 4(10), 658 (1992) Z. Li, Y. Zhao, K. Mu, H. Shan, Y. Guo, J. Wu, Y. Su, Q. Wu, Z. Sun, A. Zhao, X. Cui, C. Wu, and Y. Xie, Molecule-confined engineering toward superconductivity and ferromagnetism in two-dimensional superlattice, J. Am. Chem. Soc. 139(45), 16398 (2017) G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, Recent advances in two-dimensional materials beyond graphene, ACS Nano 9(12), 11509 (2015) R. A. Klemm, Pristine and intercalated transition metal dichalcogenide superconductors, Physica C 514, 86 (2015) X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors, Adv. Mater. 27(48), 8035 (2015) A. Giri, G. Park, and U. Jeong, Layer-structured anisotropic metal chalcogenides: Recent advances in synthesis, modulation, and applications, Chem. Rev. 123(7), 3329 (2023) E. P. Mukhokosi, G. V. Manohar, T. Nagao, S. B. Krupanidhi, and K. K. Nanda, Device architecture for visible and near-infrared photodetectors based on two-dimensional SnSe2 and MoS2: A review, Micromachines (Basel) 11(8), 750 (2020) X. Li, L. Li, H. Zhao, S. Ruan, W. Zhang, P. Yan, Z. Sun, H. Liang, and K. Tao, SnSe2 quantum dots: Facile fabrication and application in highly responsive UV-detectors, Nanomaterials (Basel) 9(9), 1324 (2019) E. Mooser and W. B. Pearson, New semiconducting compounds, Phys. Rev. 101(1), 492 (1956) G. Domingo, R. S. Itoga, and C. R. Kannewurf, Fundamental optical absorption in SnS2 and SnSe2, Phys. Rev. 143(2), 536 (1966) M. Y. Auyang and M. L. Cohen, Electronic structure and optical properties of SnS2 and SnSe2, Phys. Rev. 178(3), 1279 (1969) R. Williams, R. Murray, D. Govan, J. Thomas, and E. Evans, Band structure and photoemission studies of SnS2 and SnSe2. I. Experimental, J. Phys. C Solid State Phys. 6(24), 3631 (1973) R. Cohen, G. Wertheim, A. Rosencwaig, and H. Guggenheim, Multiplet splitting of the 4s and 5s electrons of the rare earths, Phys. Rev. B 5(3), 1037 (1972) G. Domingo, R. Itoga, and C. Kannewurf, Fundamental optical absorption in SnS2 and SnSe2, Phys. Rev. 143(2), 536 (1966) C. Fong and M. Cohen, Electronic charge densities for two layer semiconductors–SnS2 and SnSe2, J. Phys. C Solid State Phys. 7(1), 107 (1974) J. George and K. Joseph, Absorption edge measurements in tin disulphide thin films, J. Phys. D Appl. Phys. 15(6), 1109 (1982) M. Schlüter and M. L. Cohen, Valence-band density of states and chemical bonding for several non-transition-metal layer compounds: SnSe2, PbI2, BiI3, and GaSe, Phys. Rev. B 14(2), 424 (1976) A. Smith, P. Meek, and W. Liang, Raman scattering studies of SnS2 and SnSe2, J. Phys. C Solid State Phys. 10(8), 1321 (1977) R. Schlaf, C. Pettenkofer, and W. Jaegermann, Band lineup of a SnS2/SnSe2/SnS2 semiconductor quantum well structure prepared by van der Waals epitaxy, J. Appl. Phys. 85(9), 6550 (1999) G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996) G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996) J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996) M. A. Franzman, C. W. Schlenker, M. E. Thompson, and R. L. Brutchey, Solution-phase synthesis of SnSe nanocrystals for use in solar cells, J. Am. Chem. Soc. 132(12), 4060 (2010) L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen, and Q. Wang, Single-layer single-crystalline SnSe nanosheets, J. Am. Chem. Soc. 135(4), 1213 (2013) C. Zhang, H. Yin, M. Han, Z. Dai, H. Pang, Y. Zheng, Y. Q. Lan, J. Bao, and J. Zhu, Two-dimensional tin selenide nanostructures for flexible all-solid-state super-capacitors, ACS Nano 8(4), 3761 (2014) X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors, Adv. Mater. 27(48), 8035 (2015) Y. Zhou, B. Zhang, X. Chen, C. Gu, C. An, Y. Zhou, K. Cai, Y. Yuan, C. Chen, H. Wu, R. Zhang, C. Park, Y. Xiong, X. Zhang, K. Wang, and Z. Yang, Pressure-induced metallization and robust superconductivity in pristine 1 T-SnSe2, Adv. Electron. Mater. 4(8), 1800155 (2018) A. J. Forty, VI. The growth of cadmium iodide crystals (I): Dislocations and spiral growth, Lond. Edinb. Dublin Philos. Mag. J. Sci. 43(336), 72 (1952) B. E. Brown and D. J. Beerntsen, Layer structure poly-typism among niobium and tantalum selenides, Acta Crystallogr. 18(1), 31 (1965) E. Bjerkelund and A. Kjkshus, On the structural properties of the Ta1+xSe2 phaee, Acta Chem. Scand. 21, 513 (1967) Y.-H. Mao, H. Shan, J.-R. Wu, Z.-J. Li, C.-Z. Wu, X.-F. Zhai, A.-D. Zhao, and B. Wang, Observation of pseudogap in SnSe2 atomic layers grown on graphite, Front. Phys. 15(4), 43501 (2020) Y. M. Zhang, J. Q. Fan, W. L. Wang, D. Zhang, L. Wang, W. Li, K. He, C. L. Song, X. C. Ma, and Q. K. Xue, Observation of interface superconductivity in a SnSe2/epitaxial graphene van der Waals heterostructure, Phys. Rev. B 98(22), 220508 (2018) E. B. Lochocki, S. Vishwanath, X. Liu, M. Dobrowolska, J. Furdyna, H. G. Xing, and K. M. Shen, Electronic structure of SnSe2 films grown by molecular beam epitaxy, Appl. Phys. Lett. 114(9), 091602 (2019) R. Schlaf, O. Lang, C. Pettenkofer, and W. Jaegermann, Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule, J. Appl. Phys. 85(5), 2732 (1999) Q. Zhang, M. O. Li, E. B. Lochocki, S. Vishwanath, X. Liu, R. Yan, H. H. Lien, M. Dobrowolska, J. Furdyna, K. M. Shen, G. Cheng, A. R. Hight Walker, D. J. Gundlach, H. G. Xing, and N. V. Nguyen, Band offset and electron affinity of MBE-grown SnSe2, Appl. Phys. Lett. 112(4), 042108 (2018) W. Steinmann, Two-photon photoemission spectroscopy of electronic states at metal surfaces, Phys. Status Solidi B 192(2), 339 (1995) J. M. Gonzalez and I. I. Oleynik, Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials, Phys. Rev. B 94(12), 125443 (2016) Y. Peter and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, Springer Science & Business Media, 2010 H. Petek, A. Heberle, W. Nessler, H. Nagano, S. Kubota, S. Matsunami, N. Moriya, and S. Ogawa, Optical phase control of coherent electron dynamics in metals, Phys. Rev. Lett. 79(23), 4649 (1997) S. Ogawa, H. Nagano, H. Petek, and A. Heberle, Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission, Phys. Rev. Lett. 78(7), 1339 (1997) H. Petek, H. Nagano, and S. Ogawa, Hole decoherence of d bands in copper, Phys. Rev. Lett. 83(4), 832 (1999)