Resonant bonding in crystalline phase-change materials
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).
Welnic, W., Botti, S., Reining, L. & Wuttig, M. Origin of the optical contrast in phase-change materials. Phys. Rev. Lett. 98, 236403 (2007).
Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968).
Lankhorst, M. H. R., Ketelaars, B. W. S. M. M. & Wolters, R. A. M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater. 4, 347–352 (2005).
Lacaita, A. L. & Wouters, D. in Nanotechnology Vol. 3 (ed. Waser, R.) (Wiley–VCH, Weinheim, 2008).
Ielmini, D. & Zhang, Y. G. Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl. Phys. 102, 054517 (2007).
Lee, B. S. et al. Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases. J. Appl. Phys. 97, 093509 (2005).
Mendoza-Galvan, A. & Gonzalez-Hernandez, J. Drude-like behavior of Ge:Sb:Te alloys in the infrared. J. Appl. Phys. 87, 760–765 (2000).
Luo, M. B. & Wuttig, M. The dependence of crystal structure of Te-based phase-change materials on the number of valence electrons. Adv. Mater. 16, 439–443 (2004).
Yamada, N. & Matsunaga, T. Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory. J. Appl. Phys. 88, 7020–7028 (2000).
Jellison, G. E. Spectroscopic ellipsometry data analysis: Measured versus calculated quantities. Thin Solid Films 313, 33–39 (1998).
Ashcroft, N. & Mermin, D. Solid State Physics 542 (Holt-Saunders, Philadelphia, 1976).
Levine, B. F. Bond susceptibilities and ionicities in complex crystal-structures. J. Chem. Phys. 59, 1463–1486 (1973).
Olsen, J. K., Li, H. & Taylor, P. C. On the structure of GexSbyTe1−x−y glasses. J. Ovonics Res. 1, 1–6 (2005).
Kolobov, A. V. et al. Understanding the phase-change mechanism of rewritable optical media. Nature Mater. 3, 703–708 (2004).
Baker, D. A., Paesler, M. A., Lucovsky, G., Agarwal, S. C. & Taylor, P. C. Application of bond constraint theory to the switchable optical memory material Ge2Sb2Te5 . Phys. Rev. Lett. 96, 255501 (2006).
Jovari, P. et al. Local order in amorphous Ge2Sb2Te5 and Ge1Sb2Te4 . Phys. Rev. B 77, 035202 (2008).
Rabe, K. M. & Joannopoulos, J. D. Structural properties of GeTe at T=0. Phys. Rev. B 36, 3319–3324 (1987).
Robertson, J., Xiong, K. & Peacock, P. W. Electronic and atomic structure of Ge2Sb2Te5 phase change memory material. Thin Solid Films 515, 7538–7541 (2007).
Peierls, R. E. Quantum Theory of Solids (Oxford Univ. Press, Oxford, 1956).
Gaspard, J. P. & Ceolin, R. Hume-Rothery rule in V–VI compounds. Solid State Commun. 84, 839–842 (1992).
Wuttig, M. et al. The role of vacancies and local distortions in the design of new phase-change materials. Nature Mater. 6, 122–127 (2007).
Pauling, L. Nature of Chemical Bond (Cornell Univ. Press, New York, 1939).
Littlewood, P. B. The crystal structure of IV–VI compounds: I. Classification and description. J. Phys. C 13, 4855–4873 (1980).
Lucovsky, G. & White, R. M. Effects of resonance bonding on properties of crystalline and amorphous semiconductors. Phys. Rev. B 8, 660–667 (1973).
Joannopoulos, J. D., Schluter, M. & Cohen, M. L. Electronic-structure of trigonal and amorphous Se and Te. Phys. Rev. B 11, 2186–2199 (1975).
Leiga, A. G. Optical properties of trigonal selenium in vacuum ultraviolet. J. Opt. Soc. Am. 58, 880–884 (1968).
Leiga, A. G. Optical properties of amorphous selenium in vacuum ultraviolet. J. Opt. Soc. Am. 58, 1441–1445 (1968).
Tutihasi, S., Roberts, G. G., Keezer, R. C. & Drews, R. E. Optical properties of tellurium in fundamental absorption region. Phys. Rev. 177, 1143–1150 (1969).
Bammes, P., Tuomi, T., Klucker, R. & Koch, E. E. Anisotropy of dielectric-constants of trigonal selenium and tellurium between 3 and 30 eV. Phys. Status Solidi B 49, 561–570 (1972).
Potts, W. J. Chemical Infrared Spectroscopy (Wiley, New York, 1963).
Schubert, M. Infrared Ellipsometry on Semiconductor Layer Structures (Springer Tracts in Modern Physics, Vol. 209, Springer, Berlin, 2004).