Tán Xạ Compton Cộng Hưởng Của Photon Bởi Các Nguyên Tử Helium Trong Plasma Thiên Văn Lorentzian

Few-Body Systems - Tập 57 - Trang 1139-1145 - 2016
Sabyasachi Kar1, Yang Wang1, Y. K. Ho2, Zishi Jiang3
1Center for Theoretical Atomic and Molecular Physics, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, People’s Republic of China
2Institute Atomic and Molecular Sciences, Academia Sinica, Taipei, Republic of China
3College of Physical Science and Technology, Heilongjiang University, Harbin, People’s Republic of China

Tóm tắt

Chúng tôi nghiên cứu các ảnh hưởng của plasma thiên văn Lorentzian đối với hiện tượng tán xạ Compton cộng hưởng của photon bởi các trạng thái cơ sở và trạng thái kích thích của helium. Các năng lượng của trạng thái bị ràng buộc-nâng cao trong môi trường plasma được xác định bằng cách sử dụng các hàm sóng mũ tương quan cao trong khuôn khổ phương pháp biến thiên Ritz. Các tiết diện tán xạ Compton cộng hưởng trong plasma Lorentzian giữa trạng thái $$\hbox {1s}^{2}{\,}^{1}\hbox {S}$$ và 1s2p $$^{1}\hbox {P}$$, 1s2s $$^{1}\hbox {S}$$ và 1s3p $$^{1}\hbox {P}$$, 1s3s $$^{1}\hbox {S}$$ và 1s3d $$^{1}\hbox {D}$$ được báo cáo dưới dạng hàm của chỉ số quang phổ và tham số plasma. Tính chất phi nhiệt của các plasma Lorentzian cho thấy những đặc điểm thú vị về các tiết diện tán xạ Compton cộng hưởng.

Từ khóa


Tài liệu tham khảo

Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Atom–Photon Interactions. Wiley, New York (1992) Jung, Y.-D.: Resonant compton scattering in nonthermal astrophysical plasmas. Astrophys. J. 695, 917–920 (2009) Kim, H.-M., Jung, Y.D.: Nonthermal effects on the symmetric resonant charge transfer in Lorentzian plasmas. J. Appl. Phys. 106, 016105 (2009) Li, H.W., Kar, S.: Plasma screening effects on resonant Compton scattering of photons by excited hydrogenic ions in Lorentzian plasmas. Euro. Phys. J. D 66, 304 (2012) Ki, D.-H., Jung, Y.-D.: Nonthermal and screening effects on the Thomson scattering in Lorentzian plasmas. Appl. Phys. Lett. 97, 071501 (2010) Pierrard, V., Lazar, M.: Kappa distributions: theory and applications in space plasmas. Sol. Phys. 267, 153 (2010) Jiang, P., Kar, S., Zhou, Y.: Doubly excited states of the hydrogen negative ion and helium atom in astrophysical plasmas. Phys. Plasmas 20, 012126 (2013) Jiang, P., Kar, S., Zhou, Y.: Doubly-excited states of two-electron systems in Lorentzian astrophysical plasmas. Few-Body Syst. 54, 1911–1919 (2013) Livadiotis, G., McComas, D.J.: Understanding kappa distributions: a toolbox for space science and astrophysics. Space Sci. Rev. 175, 183–214 (2013) Livadiotis, G.: Kappa distribution in the presence of a potential energy. J. Geophys. Res.: Space Phys. 120, 880–903 (2015) Kar, S., Wang, Y., Ho, Y.K.: Resonant Compton scattering of photons by \(\text{ He }(1s^{21}S)\) in astrophysical plasmas. J. Phys.: Conf. Ser. 635, 122001 (2015) Livadiotis, G.: Curie law for systems described by kappa distributions. Euro. Phys. Lett. 113, 10003 (2016) Hasegawa, A., Mima, K., Duong-Van, M.: Plasma distribution function in a superthermal radiation field. Phys. Rev. Lett. 54, 2608–2610 (1985) Bryant, D.A.: Debye length in a kappa-distribution plasma. J. Plasma Phys. 56, 87–93 (1996) Rubab, N., Murtaza, G.: Debye length in non-Maxwellian plasmas. Phys. Scr. 74, 145–148 (2006) Hasegawa, A., Sato, T.: Space Plasma Physics: Vol. 1, Stationary Processes. Springer, Berlin (1989) Jung, Y.D.: Double ionization of \({\text{ H }}^{-}\) ions by electron impact in the solar atmosphere. Astrophys. J. 674, 1207 (2008) Treumann, R.A., Jaroschek, C.H.: Gibbsian theory of power-law distributions. Phys. Rev. Lett. 100, 155005 (2008) Kim, C.-G., Jung, Y.-D.: Dynamic screening effects on the electron-impact excitation in Lorentzian (kappa)-Maxwellian plasmas. J. Appl. Phys. 96, 913 (2004) Liu, Zh, Du, J.: Dust acoustic instability driven by drifting ions and electrons in the dust plasma with Lorentzian kappa distribution. Phys. Plasmas 16, 123707 (2009) Kim, H.-M., Jung, Y.-D.: Nonthermal effects on the Karpman–Washimi ponderomotive magnetization in Lorentzian plasmas. Phys. Plasmas 16, 114504 (2009) Ki, D.-H., Jung, Y.-D.: Nonthermal effects on the resonant instability of the dust-acoustic wave in a semi-bounded Lorentzian dusty plasma. Phys. Plasmas 18, 064504 (2011) Jung, Y.-D., Hong, W.-P.: Nonthermal effects on the ion-acoustic solitons in Lorentzian electron-ion plasmas. Phys. Plasmas 18, 024502 (2011) Rubab, N., Erkaev, V., Biernat, H.K., Langmayr, D.: Kinetic Alfven wave instability in a Lorentzian dusty plasma: non-resonant particle approach. Phys. Plasmas 18, 073701 (2011) Jung, Y.-D., Hong, W.-P.: Nonthermal effects on the electron-atom bremsstrahlung process in generalized Lorentzian plasmas. Phys. Plasmas 19, 013301 (2012) Kar, S., Ho, Y.K.: Electron affinity of the hydrogen atom and a resonance state of the hydrogen negative ion embedded in Debye plasmas. New J. Phys. 7, 141 (2005) Kar, S., Ho, Y.K.: Oscillator strengths and polarizabilities of the hot-dense plasma-embedded helium atom. J. Quant. Spectrosc. Radiat. Transf. 109, 445 (2008) Sil, A.N., Canuto, S., Mukherjee, P.K.: Spectroscopy of confined atomic systems: effect of plasma. Adv. Quantum Chem. 58, 115–175 (2009) Kar, S., Ho, Y.K.: Effect of screened Coulomb potentials on the resonance states of two-electron highly stripped atoms using the stabilization method. J. Phys. B 42, 044007 (2009) Kar, S., Ho, Y.K.: Calculations of D-wave bound states and resonance states of the screened helium atom using correlated exponential wave functions. Int. J. Quantum Chem. 110, 993 (2010) Kar, S.: Dynamic dipole polarizability of the helium atom with Debye-Hückel potentials. Phys. Rev. A 86, 062516 (2012) Sen, S., Mandal, P., Mukherjee, P.K.: Hyperpolarizability of two electron atoms under spherically confined Debye plasma. Phys. Plasmas 19, 033501 (2012) Li, H.W., Kar, S.: Polarizabilities of Li and Na in Debye plasmas. Phys. Plasmas 19, 073303 (2012) Serra, P., Kais, S.: Ground-state stability and criticality of two-electron atoms with screened Coulomb potentials using the B-splines basis set. J. Phys. B 45, 235003 (2012) Winkler, P.: Computation of screened two-electron matrix elements. Int. J. Quantum Chem. 113, 2012 (2013) Kar, S., Li, H.W., Shen, Z.C.: Dispersion coefficients for interactions among H, Li, Na, K atoms with Debye-Hückel potentials. J. Quant. Spectrosc. Radiat. Transf. 116, 34 (2013) Ordóňez-Lasso, A.F., Cardona, J.C., Sanz-Vicario, J.L.: Feshbach projection approach to study plasma effects on doubly excited autoionizing states in helium. Phys. Rev. A 88, 012702 (2013) Jiao, L.G., Ho, Y.K.: Calculation of screened Coulomb potential matrices and its application to He bound and resonant states. Phys. Rev. A 90, 012521 (2014) Kar, S., Wang, Y., Jiang, Z., Li, S., Ratnavelu, K.: Doubly-excited\(^{1, 3}\,{\text{ D }}^{{\rm e}}\) resonance states of two-electron positive ions \({\text{ Li }}^{+}\) and \({\text{ Be }}^{2+}\) in Debye plasmas. Phys. Plasmas 21, 012105 (2014) Kar, S., Jiang, Z.: Energies and transition wavelengths for two-electron atoms under Debye screening. Atomic Data Nuclear Data Tables 102, 42–63 (2015) Pandey, M.K., Lin, Y.C., Ho, Y.K.: Classical analysis of angular differential and total cross sections for charge transfer and ionization in He-like systems-helium atom collisions. Chin. J. Phys. 54, 175 (2016) Pandey, M.K., Lin, Y.C., Ho, Y.K.: Positronium formation in collisions between positrons and alkali-metal atoms (Li, Na, K, Rb and Cs) in Debye plasma environments. J. Phys. B 49, 034007 (2016) Ho, Y.K., Kar, S.: High-lying doubly excited resonances in \({\text{ Ps }}^{-}\) interacting with screened Coulomb potentials. Chin. J. Phys. (2016). doi:10.1016/j.cjph.2016.05.006 Dutta, S., Saha, J.K., Chandra, R., Mukherjee, T.K.: Structural properties of lithium atom under weakly coupled plasma environment. Phys. Plasmas 23, 042107 (2016) Bishop, D.M., Pipin, J.: Improved dynamic hyperpolarizabilities and field-gradient polarizabilities for helium. J. Chem. Phys. 91, 3549 (1989) Frolov, A.M., Smith Jr., V.H.: Bound states with arbitrary angular momenta in nonrelativistic three-body systems. Phys. Rev. A 53, 3853 (1996)