Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators

Nature Reviews Immunology - Tập 8 Số 5 - Trang 349-361 - 2008
Charles N. Serhan1, Nan Chiang1, Thomas E. Van Dyke2
1Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, Massachusetts, USA
2Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, 100 East Newton Street, Boston, 02118, Massachusetts, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Majno, G. & Joris, I. Cells, Tissues, and Disease: Principles of General Pathology (Oxford Univ., New York, 2004).

Weissmann, G., Smolen, J. E. & Korchak, H. M. Release of inflammatory mediators from stimulated neutrophils. N. Engl. J. Med. 303, 27–34 (1980).

Collard, C. D. & Gelman, S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 94, 1133–1138 (2001).

Luster, A. D., Alon, R. & von Andrian, U. H. Immune cell migration in inflammation: present and future therapeutic targets. Nature Immunol. 6, 1182–1190 (2005).

Serhan, C. N. et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 21, 325–332 (2007). The first consensus report on the definitions and mechanisms of resolution.

Bannenberg, G. L. et al. Molecular circuits of resolution: formation and actions of resolvins and protectins. J. Immunol. 174, 4345–4355 (2005). This study reports the first in vivo molecular mapping of the formation and actions of protectins and resolvins using a new mediator lipidomics and proteomics systems approach.

Serhan, C. N. A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: missing links to resolution. Histochem. Cell Biol. 122, 305–321 (2004).

Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K. & Serhan, C. N. Lipid mediator class switching during acute inflammation: signals in resolution. Nature Immunol. 2, 612–619 (2001).

Serhan, C. N. et al. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 192, 1197–1204 (2000). This study identifies specialized lipid mediators in spontaneous resolution of inflammation, now known as resolvin E1.

Serhan, C. N. et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter pro-inflammation signals. J. Exp. Med. 196, 1025–1037 (2002). This reference reports the discovery of the resolvins in resolving exudates in vivo and describes the complete structure and bioactions of the D-series and E-series resolvins and protectins.

Hong, S., Gronert, K., Devchand, P., Moussignac, R.-L. & Serhan, C. N. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood and glial cells: autacoids in anti-inflammation. J. Biol. Chem. 278, 14677–14687 (2003). This study reports the identification of the DHA-derived anti-inflammatory resolvins and protectins.

Maddox, J. F. & Serhan, C. N. Lipoxin A4 and B4 are potent stimuli for human monocyte migration and adhesion: selective inactivation by dehydrogenation and reduction. J. Exp. Med. 183, 137–146 (1996).

Gilroy, D. W., Lawrence, T., Perretti, M. & Rossi, A. G. Inflammatory resolution: new opportunities for drug discovery. Nature Rev. Drug Discov. 3, 401–416 (2004). A review emphasizing the potential of the resolution field for drug discovery.

Serhan, C. N., guest ed. Special Issue on Lipoxins and Aspirin-Triggered Lipoxins. Prostaglandins Leukot. Essent. Fatty Acids 73, 139–321 (2005). A collection of 19 reviews on the anti-inflammatory actions of lipoxins and aspirin-triggered lipoxins, and the therapeutic potential of stable metabolic analogues.

Schwab, J. M., Chiang, N., Arita, M. & Serhan, C. N. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447, 869–874 (2007).

Canny, G. et al. Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc. Natl Acad. Sci. USA 99, 3902–3907 (2002).

Campbell, E. L. et al. Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution. FASEB J. 21, 3162–3170 (2007).

Flower, R. J. Prostaglandins, bioassay and inflammation. Br. J. Pharmacol. 147, S182–S192 (2006).

Samuelsson, B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220, 568–575 (1983). A review on the biosynthesis and bioactions of leukotrienes.

Lands, W. E. M. Proceedings of the AOCS Short Course on Polyunsaturated Fatty Acids and Eicosanoids (American Oil Chemists' Society, Champaign, Illinois, 1987).

Van Dyke, T. E. & Serhan, C. N. Resolution of inflammation: a new paradigm for the pathogenesis of periodontal diseases. J. Dent. Res. 82, 82–90 (2003).

Kunkel, S. L., Ogawa, H., Conran, P. B., Ward, P. A. & Zurier, R. B. Suppression of acute and chronic inflammation by orally administered prostaglandins. Arthritis Rheum. 24, 1151–1158 (1981).

Hasturk, H. et al. Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo. J. Immunol. 179, 7021–7029 (2007). This reference reports the ability of resolvin E1 to stimulate bone regeneration.

Williams, T. J., Jose, P. J., Wedmore, C. V., Peck, M. J. & Forrest, M. J. Mechanisms underlying inflammatory edema: the importance of synergism between prostaglandins, leukotrienes, and complement-derived peptides. Adv. Prostaglandin Thromboxane Leukot. Res. 11, 33–37 (1983).

Pons, F., Williams, T. J., Kirk, S. A., McDonald, F. & Rossi, A. G. Pro-inflammatory and anti-inflammatory effects of the stable prostaglandin D2 analogue, ZK 118.182. Eur. J. Pharmacol. 261, 237–247 (1994).

Rajakariar, R. et al. Hematopoietic prostaglandin D2 synthase controls the onset and resolution of acute inflammation through PGD2 and 15-deoxyδ12–14 PGJ2 . Proc. Natl Acad. Sci. USA 104, 20979–20984 (2007).

Haworth, O. & Buckley, C. D. Resolving the problem of persistence in the switch from acute to chronic inflammation. Proc. Natl Acad. Sci. USA 104, 20647–20648 (2007).

Godson, C. et al. Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J. Immunol. 164, 1663–1667 (2000). The first demonstration that lipoxins stimulate the uptake of apoptotic neutrophils.

Gronert, K., Gewirtz, A., Madara, J. L. & Serhan, C. N. Identification of a human enterocyte lipoxin A4 receptor that is regulated by IL-13 and IFN-γ and inhibits TNF-α-induced IL-8 release. J. Exp. Med. 187, 1285–1294 (1998).

Wallace, J. L. & Fiorucci, S. A magic bullet for mucosal protection. And aspirin is the trigger! Trends Pharmacol. Sci. 24, 323–326 (2003). An authoritative review on the importance of the triggering of endogenous aspirin-triggered lipoxins in gastric mucosal protection.

Colgan, S. P., Serhan, C. N., Parkos, C. A., Delp-Archer, C. & Madara, J. L. Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers. J. Clin. Invest. 92, 75–82 (1993).

Fiore, S. & Serhan, C. N. Formation of lipoxins and leukotrienes during receptor-mediated interactions of human platelets and recombinant human granulocyte/macrophage colony-stimulating factor-primed neutrophils. J. Exp. Med. 172, 1451–1457 (1990).

Romano, M. & Serhan, C. N. Lipoxin generation by permeabilized human platelets. Biochemistry 31, 8269–8277 (1992).

Edenius, C., Haeggstrom, J. & Lindgren, J. A. Transcellular conversion of endogenous arachidonic acid to lipoxins in mixed human platelet-granulocyte suspensions. Biochem. Biophys. Res. Commun. 157, 801–807 (1988).

Freire-de-Lima, C. G. et al. Apoptotic cells, through transforming growth factor-β, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages. J. Biol. Chem. 281, 38376–38384 (2006).

Vance, R. E., Hong, S., Gronert, K., Serhan, C. N. & Mekalanos, J. J. The opportunistic pathogen Pseudomonas aeruginosa carries a novel secretable arachidonate 15-lipoxygenase. Proc. Natl Acad. Sci. USA 101, 2135–2139 (2004).

Aliberti, J., Hieny, S., Reis e Sousa, C., Serhan, C. N. & Sher, A. Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nature Immunol. 3, 76–82 (2002).

Bannenberg, G. L., Aliberti, J., Hong, S., Sher, A. & Serhan, C. N. Exogenous pathogen and plant 15-lipoxygenase initiate endogenous lipoxin A4 biosynthesis. J. Exp. Med. 199, 515–523 (2004).

Takano, T., Clish, C. B., Gronert, K., Petasis, N. & Serhan, C. N. Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues. J. Clin. Invest. 101, 819–826 (1998).

Chiang, N. et al. The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacol. Rev. 58, 463–487 (2006).

Maddox, J. F. et al. Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein linked lipoxin A4 receptor. J. Biol. Chem. 272, 6972–6978 (1997).

Gronert, K., Colgan, S. P. & Serhan, C. N. Characterization of human neutrophil and endothelial cell ligand-operated extracellular acidification rate by microphysiometry: impact of reoxygenation. J. Pharmacol. Exp. Ther. 285, 252–261 (1998).

Patcha, V. et al. Differential inside-out activation of β2-integrins by leukotriene B4 and fMLP in human neutrophils. Exp. Cell Res. 300, 308–319 (2004).

Svensson, C. I., Zattoni, M. & Serhan, C. N. Lipoxins and aspirin-triggered lipoxin stop inflammatory pain processing. J. Exp. Med. 204, 245–252 (2007).

Vane, J. R. in Les Prix Nobel: Nobel Prizes, Presentations, Biographies and Lectures. 181–206 (Almqvist & Wiksell, Stockholm, 1982).

Clària, J. & Serhan, C. N. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc. Natl Acad. Sci. USA 92, 9475–9479 (1995).

Chiang, N., Bermudez, E. A., Ridker, P. M., Hurwitz, S. & Serhan, C. N. Aspirin triggers anti-inflammatory 15-epi-lipoxin A4 and inhibits thromboxane in a randomized human trial. Proc. Natl Acad. Sci. USA 101, 15178–15183 (2004). The first demonstration of the in vivo formation of aspirin-triggered lipid mediators in humans in a double-blind randomized clinical trial.

Nascimento-Silva, V., Arruda, M. A., Barja-Fidalgo, C., Villela, C. G. & Fierro, I. M. Novel lipid mediator aspirin-triggered lipoxin A4 induces heme oxygenase-1 in endothelial cells. Am. J. Physiol. Cell Physiol. 289, C557–C563 (2005). The first demonstration that lipoxin A 4 stimulates the induction of the HO1 system.

Biteman, B. et al. Interdependence of lipoxin A4 and heme-oxygenase in counter-regulating inflammation during corneal wound healing. FASEB J. 21, 2257–2266 (2007).

Paul-Clark, M. J., van Cao, T., Moradi-Bidhendi, N., Cooper, D. & Gilroy, D. W. 15-epi-lipoxin A4-mediated induction of nitric oxide explains how aspirin inhibits acute inflammation. J. Exp. Med. 200, 69–78 (2004).

Serhan, C. N. et al. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J. Immunol. 176, 1848–1859 (2006).

Birnbaum, Y. et al. Augmentation of myocardial production of 15-epi-lipoxin-A4 by pioglitazone and atorvastatin in the rat. Circulation 114, 929–935 (2006). This paper reports the discovery that statins stimulate endogenous 15-epi-lipoxin A 4 formation, a potential endogenous anti-inflammatory messenger of the actions of statins.

Ariel, A., Chiang, N., Arita, M., Petasis, N. A. & Serhan, C. N. Aspirin-triggered lipoxin A4 and B4 analogs block extracellular signal-regulated kinase-dependent TNF-α secretion from human T cells. J. Immunol. 170, 6266–6272 (2003).

Kowal-Bielecka, O., Kowal, K., Distler, O. & Gay, S. Mechanisms of disease: leukotrienes and lipoxins in scleroderma lung disease—insights and potential therapeutic implications. Nature Clin. Pract. Rheumatol. 3, 43–51 (2007).

Simopoulos, A. P. Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 21, 495–505 (2002).

GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico. Lancet 354, 447–455 (1999).

Lu, Y., Hong, S., Tjonahen, E. & Serhan, C. N. Mediator-lipidomics: databases and search algorithms for PUFA-derived mediators. J. Lipid Res. 46, 790–802 (2005).

Arita, M. et al. Stereochemical assignment, anti-inflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J. Exp. Med. 201, 713–722 (2005). This reference provides the complete stereochemical assignment of natural resolvin E1 and its total organic synthesis and interactions with GPCRs.

Winyard, P. G. & Willoughby, D. A. Inflammation Protocols (Humana, Totowa, New Jersey, 2003).

Tjonahen, E. et al. Resolvin E2: identification and anti-inflammatory actions: pivotal role of human 5-lipoxygenase in resolvin E series biosynthesis. Chem. Biol. 13, 1193–1202 (2006).

Hasturk, H. et al. RvE1 protects from local inflammation and osteoclast mediated bone destruction in periodontitis. FASEB J. 20, 401–403 (2006).

Arita, M. et al. Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc. Natl Acad. Sci. USA 102, 7671–7676 (2005).

Arita, M. et al. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J. Immunol. 178, 3912–3917 (2007).

Bazan, N. G., Birkle, D. L. & Reddy, T. S. Docosahexaenoic acid (22:6, n-3) is metabolized to lipoxygenase reaction products in the retina. Biochem. Biophys. Res. Commun. 125, 741–747 (1984).

Salem, N. Jr, Litman, B., Kim, H.-Y. & Gawrisch, K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 36, 945–959 (2001). An authoritative review of the important role of the essential fatty acid DHA in neural systems.

Marcheselli, V. L. et al. Novel docosanoids inhibit brain ischemia–reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 278, 43807–43817 (2003). This reference describes the identification of neuroprotectin D1 in vivo in brain ischaemia and its protective role in neural damage.

Sun, Y.-P. et al. Resolvin D1 and its aspirin-triggered 17R epimer: stereochemical assignments, anti-inflammatory properties and enzymatic inactivation. J. Biol. Chem. 282, 9323–9334 (2007).

Wood, P. L. Neuroinflammation: Mechanisms and Management (Humana, Totowa, New Jersey, 1998).

Lukiw, W. J. et al. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest. 115, 2774–2783 (2005). This report provides a demonstration of the role of neuroprotectin D1 in cell survival and its potential deficiency in Alzheimer's disease.

Mukherjee, P. K., Marcheselli, V. L., Serhan, C. N. & Bazan, N. G. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl Acad. Sci. USA 101, 8491–8496 (2004).

Ariel, A. et al. The docosatriene protectin D1 is produced by TH2 skewing and promotes human T cell apoptosis via lipid raft clustering. J. Biol. Chem. 280, 43079–43086 (2005).

Mitchell, S. et al. Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J. Am. Soc. Nephrol. 13, 2497–2507 (2002). This reference gives an in vivo demonstration of the uptake of apoptotic neutrophils by lipoxins.

Ariel, A. et al. Apoptotic neutrophils and T cells sequester chemokines during immune response resolution via modulation of CCR5 expression. Nature Immunol. 7, 1209–1216 (2006).

Serhan, C. N. et al. Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. J. Immunol. 171, 6856–6865 (2003).

Shen, J. et al. Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development. J. Clin. Invest. 98, 2201–2208 (1996).

Mangino, M. J., Brounts, L., Harms, B. & Heise, C. Lipoxin biosynthesis in inflammatory bowel disease. Prostaglandins Other Lipid Mediat. 79, 84–92 (2006).

Fiorucci, S. et al. A β-oxidation-resistant lipoxin A4 analog treats hapten-induced colitis by attenuating inflammation and immune dysfunction. Proc. Natl Acad. Sci. USA 101, 15736–15741 (2004). The first demonstration that the second-generation lipoxin stable analogues are protective in models of gastrointestinal inflammation.

Gronert, K. et al. A role for the mouse 12/15-lipoxygenase pathway in promoting epithelial wound healing and host defense. J. Biol. Chem. 280, 15267–15278 (2005).

Basile, D. P., Donohoe, D., Roethe, K. & Osborn, J. L. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am. J. Physiol. Renal Physiol. 281, F887–F899 (2001).

Duffield, J. S. et al. Resolvin D series and protectin D1 mitigate acute kidney injury. J. Immunol. 177, 5902–5911 (2006).

González-Périz, A. et al. Docosahexanenoic acid (DHA) blunts liver injury by conversion to protective lipid mediators: protectin D1 and 17S-hydroxy-DHA. FASEB J. 20, 2537–2539 (2006).

Levy, B. D. et al. Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A4 . Nature Med. 8, 1018–1023 (2002).

Levy, B. D. et al. Diminished lipoxin biosynthesis in severe asthma. Am. J. Respir. Crit. Care Med. 172, 824–830 (2005).

Levy, B. D. et al. Protectin D1 is generated in asthma and dampens airway inflammation and hyper-responsiveness. J. Immunol. 178, 496–502 (2007).

Gilroy, D. W. et al. Inducible cycloxygenase may have anti-inflammatory properties. Nature Med. 5, 698–701 (1999).

Rossi, A. G. & Sawatzky, D. A. The Resolution of Inflammation (Birkhäuser Verlag AG, Basel, 2007).

Serhan, C. N. et al. Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry 34, 14609–14615 (1995).

Rossi, A. G. et al. Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nature Med. 12, 1056–1064 (2006).

Karp, C. L. et al. Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis airway. Nature Immunol. 5, 388–392 (2004). This reference demonstrates that lipoxins are anti-inflammatory and protective in a model of cystic fibrosis.

Hudert, C. A. et al. Transgenic mice rich in endogenous n-3 fatty acids are protected from colitis. Proc. Natl Acad. Sci. USA 103, 11276–11281 (2006).

Xia, S. et al. Melanoma growth is reduced in fat-1 transgenic mice: impact of omega-6/omega-3 essential fatty acids. Proc. Natl Acad. Sci. USA 103, 12499–12504 (2006).

Jozsef, L., Zouki, C., Petasis, N. A., Serhan, C. N. & Filep, J. G. Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit peroxynitrite formation, NF-κB and AP-1 activation, and IL-8 gene expression in human leukocytes. Proc. Natl Acad. Sci. USA 99, 13266–13271 (2002).

Filep, J. G., Zouki, C., Petasis, N. A., Hachicha, M. & Serhan, C. N. Anti-inflammatory actions of lipoxin A4 stable analogs are demonstrable in human whole blood: modulation of leukocyte adhesion molecules and inhibition of neutrophil-endothelial interactions. Blood 94, 4132–4142 (1999).

Papayianni, A., Serhan, C. N. & Brady, H. R. Lipoxin A4 and B4 inhibit leukotriene-stimulated interactions of human neutrophils and endothelial cells. J. Immunol. 156, 2264–2272 (1996).

Levy, B. D. et al. Polyisoprenyl phosphate (PIPP) signaling regulates phospholipase D activity: a “stop” signaling switch for aspirin-triggered lipoxin A4 . FASEB J. 13, 903–911 (1999).

Fiore, S. & Serhan, C. N. Lipoxin A4 receptor activation is distinct from that of the formyl peptide receptor in myeloid cells: inhibition of CD11/18 expression by lipoxin A4-lipoxin A4 receptor interaction. Biochemistry 34, 16678–16686 (1995).

Bandeira-Melo, C. et al. Cutting edge: lipoxin (LX) A4 and aspirin-triggered 15-epi-LXA4 block allergen-induced eosinophil trafficking. J. Immunol. 164, 2267–2271 (2000).

Lee, T. H. et al. Lipoxin A4 and lipoxin B4 inhibit chemotactic responses of human neutrophils stimulated by leukotriene B4 and N-formyl-L-methionyl-L-leucyl-L-phenylalanine. Clin. Sci. 77, 195–203 (1989).

Bonnans, C. et al. Lipoxins are potential endogenous antiinflammatory mediators in asthma. Am. J. Respir. Crit. Care Med. 165, 1531–1535 (2002).

Gewirtz, A. T. et al. Lipoxin A4 analogs attenuate induction of intestinal epithelial proinflammatory gene expression and reduce the severity of dextran sodium sulfate-induced colitis. J. Immunol. 168, 5260–5267 (2002).

Gewirtz, A. T. et al. Pathogen-induced chemokine secretion from model intestinal epithelium is inhibited by lipoxin A4 analogs. J. Clin. Invest. 101, 1860–1869 (1998).

Brezinski, M. E., Gimbrone, M. A. Jr, Nicolaou, K. C. & Serhan, C. N. Lipoxins stimulate prostacyclin generation by human endothelial cells. FEBS Lett. 245, 167–172 (1989).

Nascimento-Silva, V., Arruda, M. A., Barja-Fidalgo, C. & Fierro, I. M. Aspirin-triggered lipoxin A4 blocks reactive oxygen species generation in endothelial cells: a novel antioxidative mechanism. Thromb. Haemost. 97, 88–98 (2007).

Cezar-de-Mello, P. F., Nascimento-Silva, V., Villela, C. G. & Fierro, I. M. Aspirin-triggered lipoxin A4 inhibition of VEGF-induced endothelial cell migration involves actin polymerization and focal adhesion assembly. Oncogene 25, 122–129 (2006).

Sodin-Semrl, S., Taddeo, B., Tseng, D., Varga, J. & Fiore, S. Lipoxin A4 inhibits IL-1β-induced IL-6, IL-8, and matrix metalloproteinase-3 production in human synovial fibroblasts and enhances synthesis of tissue inhibitors of metalloproteinases. J. Immunol. 164, 2660–2666 (2000).

Wu, S. H., Wu, X. H., Lu, C., Dong, L. & Chen, Z. Q. Lipoxin A4 inhibits proliferation of human lung fibroblasts induced by connective tissue growth factor. Am. J. Respir. Cell Mol. Biol. 34, 65–72 (2006).

Planagumà, A. et al. Aspirin (ASA) regulates 5-lipoxygenase activity and peroxisome proliferator-activated receptor a-mediated CINC-1 release in rat liver cells: novel actions of lipoxin A4 (LXA4) and ASA-triggered 15-epi-LXA4 . FASEB J. 16, 1937–1939 (2002).

McMahon, B. et al. Lipoxin A4 antagonizes the mitogenic effects of leukotriene D4 in human renal mesangial cells: differential activation of MAP kinases through distinct receptors. J. Biol. Chem. 275, 27566–27575 (2000).

Wu, S. H. et al. Lipoxin A4 inhibits connective tissue growth factor-induced production of chemokines in rat mesangial cells. Kidney Int. 69, 248–256 (2006).

Wada, K. et al. Leukotriene B4 and lipoxin A4 are regulatory signals for neural stem cell proliferation and differentiation. FASEB J. 20, 1785–1792 (2006).

Clish, C. B. et al. Local and systemic delivery of a stable aspirin-triggered lipoxin prevents neutrophil recruitment in vivo. Proc. Natl Acad. Sci. USA 96, 8247–8252 (1999).

Takano, T. et al. Aspirin-triggered 15-epi-lipoxin A4 and LXA4 stable analogs are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors. J. Exp. Med. 185, 1693–1704 (1997).

Chiang, N. et al. Leukotriene B4 receptor transgenic mice reveal novel protective roles for lipoxins and aspirin-triggered lipoxins in reperfusion. J. Clin. Invest. 104, 309–316 (1999).

Scalia, R., Gefen, J., Petasis, N. A., Serhan, C. N. & Lefer, A. M. Lipoxin A4 stable analogs inhibit leukocyte rolling and adherence in the rat mesenteric microvasculature: role of P-selectin. Proc. Natl Acad. Sci. USA 94, 9967–9972 (1997).

Fierro, I. M., Kutok, J. L. & Serhan, C. N. Novel lipid mediator regulators of endothelial cell proliferation and migration: aspirin-triggered-15R-lipoxin A4 and lipoxin A4 . J. Pharmacol. Exp. Ther. 300, 385–392 (2002).

Devchand, P. R. et al. A synthetic eicosanoid LX-mimetic unravels host-donor interactions in allogeneic BMT-induced GvHD to reveal an early protective role for host neutrophils. FASEB J. 19, 203–210 (2005).

Munger, K. A. et al. Transfection of rat kidney with human 15-lipoxygenase suppresses inflammation and preserves function in experimental glomerulonephritis. Proc. Natl Acad. Sci. USA 96, 13375–13380 (1999).

Connor, K. M. et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nature Med. 13, 868–873 (2007).