Resistance exercise training lowers HbA1c more than aerobic training in adults with type 2 diabetes

Diabetology & Metabolic Syndrome - Tập 1 Số 1 - 2009
Salameh Bweir1, Muhammed Al-Jarrah2, Abdul-Majeed Almalty1, Mikhled F. Maayah2, Irina V. Smirnova3, Lesya Novikova3, Lisa Stehno‐Bittel3
1Department of Physiotherapy, Allied Medical Sciences, Hashemite University, Zarqa, Jordan
2Department of Physiotherapy, Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
3Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, USA

Tóm tắt

Abstract Background

The aim of this study was to compare the effects of 10 weeks of resistance or treadmill exercises on glycemic indices levels prior to and immediately following exercise in adults with type 2 diabetes.

Research Design and Method

Twenty inactive subjects (mean age 53.5 years) with type 2 diabetes enrolled in the study. Baseline HbA1c, blood glucose levels, heart rate, and blood pressure were measured for each subject prior to the initiation of the exercise program. Subsequently, subjects were matched to age, waist circumference and sex and assigned to either isocaloric resistance or treadmill exercise groups, which met 3 times per week for 10 weeks.

Results

Both groups showed a reduction in pre and post-exercise blood glucose and HbA1c values. There was no change in resting blood pressure or heart rate in either group during the course of the 10 week intervention. The group receiving resistance exercises showed significant differences in the daily pre-exercise plasma glucose readings between the beginning and end of the exercise protocol (p < 0.001). There were significant improvements in the mean HbA1c reading pre and post training in both groups (p < 0.001). However, the greater reduction was noted in the resistance exercise group, and at 10 weeks their HbA1c levels were significantly lower than the group that received treadmill exercises (p < 0.006).

Conclusion

Ten weeks of resistance exercises were associated with a significantly better glycemic control in adults with type 2 diabetes compared to treadmill exercise.

Từ khóa


Tài liệu tham khảo

Stratton I, Cull C, Adler A, Matthews D, Neil H, Holman R: Additive effects of glycaemia and blood pressure exposure on risk of complications in type 2 diabetes: a prospective observational study (UKPDS 75). Diabetologia. 2006, 49: 1761-1769. 10.1007/s00125-006-0297-1.

Group UPDSU: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). The Lancet. 1998, 352: 837-853. 10.1016/S0140-6736(98)07019-6.

Fuller J, Stevens L, Wang S: Risk factors for cardiovascular mortality and morbidity: the WHO Mutinational Study of Vascular Disease in Diabetes. Diabetologia. 2001, 44: S54-S64. 10.1007/PL00002940.

Khaw K, Wareham N, Luben R, Bingham S, Oakes S, Welch A, Day N: Glycated haemoglobin, diabetes, and mortality in men in Norfolk cohort of European prospective investigation of cancer and nutrition (EPICNorfolk). BMJ. 2001, 322 (7277): 15-10.1136/bmj.322.7277.15.

Eldor R, Raz I: The Individualized Target HbA1c: A New Method for Improving Macrovascular Risk and Glycemia Without Hypoglycemia and Weight Gain. Rev Diabet Stud. 2009, 6: 6-12. 10.1900/RDS.2009.6.6.

Weiss I, Valiquette G, Schwarcz M: Impact of glycemic treatment choices on cardiovascular complications in type 2 diabetes. Cardiol Rev. 2009, 17 (4): 165-175. 10.1097/CRD.0b013e3181a7b34c.

Skyler J, Bergenstal R, Bonow R, Buse J, Deedwania P, Gale E, Howard B, Kirkman M, Kosiborod M, Reaven P, RS S: Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA Diabetes Trials: a position statement of the American Diabetes Association and a Scientific Statement of the American College of Cardiology Foundation and the American Heart Association. J Am Coll Cardiol. 2009, 53: 298-304. 10.1016/j.jacc.2008.10.008.

Group AtCCRiDS: Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008, 358: 2545-2559. 10.1056/NEJMoa0802743.

Simpson S, Majumdar S, Tsuyuki R, Eurich D, Johnson J: Dose-response relation between sulfonylurea drugs and mortality in type 2 diabetes mellitus: a population-based cohort study. CMAJ. 2006, 174: 169-174.

Edelman S, Maier H, Wilhelm K: Pramlintide in the treatment of diabetes mellitus. BioDrugs. 2008, 22: 375-386. 10.2165/0063030-200822060-00004.

Boule N, Haddad E, Kenny G, Wells G, Sigal R: Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001, 286: 1218-1227. 10.1001/jama.286.10.1218.

Zanuso S, Jimenez A, Pugliese G, Corigliano G, Balducci S: Exercise for the management of type 2 diabetes: a review of the evidence. Acta Diabetol. 2009,

Thomas D, Elliott E, Naughton G: Exercise for type 2 diabetes mellitus. Cochrane Database Syst Rev 3. 2006, CD002968-

Association AD: Standards of medical care in diabetes--2009. Diabetes Care. 2009, 32: S13-S61. 10.2337/dc09-S013.

Marwick T, Hordern M, Miller T, Chyun D, Bertoni A, Blumenthal R, Philippides G, Rocchini A: Exercise Training for Type 2 Diabetes Mellitus Impact on Cardiovascular Risk: A Scientific Statement From the American Heart Association. Circulation. 2009, 119: 3244-3262. 10.1161/CIRCULATIONAHA.109.192521.

Praet S, van Loon L: Exercise therapy in Type 2 diabetes. Acta Diabetologica. 2009, 46 (4): 263-278. 10.1007/s00592-009-0129-0.

Mourier A, Gautier J, De Kerviler E: Mobilization of visceral adipose tissue related to the improvement in insulin sensitivity in response to physical training in NIDDM. Effects of branched-chain amino acid supplements. Diabetes Care. 1997, 20: 385-391. 10.2337/diacare.20.3.385.

O'Donovan G, Kearney E, Nevill A, Woolf-May K, Bird S: The effects of 24 weeks of moderate- or high-intensity exercise on insulin resistance. Eur J Appl Physiol. 2005, 95: 522-528. 10.1007/s00421-005-0040-5.

Hordern M, Coombes J, Cooney L, Jeffriess L, Prins J, Marwick T: Effects of Exercise Intervention on Myocardial Function in Type 2 Diabetes. Heart. 2009, 95: 1343-1349. 10.1136/hrt.2009.165571.

Gordon B, Benson A, Bird S, Fraser S: Resistance training improves metabolic health in type 2 diabetes: a systematic review. Diabetes Res Clin Pract. 2009, 83: 157-175. 10.1016/j.diabres.2008.11.024.

Jennings A, Alberga A, Sigal R, Jay O, Boulé N, GP K: The effect of exercise training on resting metabolic rate in type 2 diabetes mellitus. Med Sci Sports Exerc. 2009, 41: 1558-1565. 10.1249/MSS.0b013e31819d6a6f.

Baldi J, Snowling N: Resistance training improves glycaemic control in obese type 2 diabetic men. Int J Sports Med. 2003, 24: 419-423. 10.1055/s-2003-41173.

Ishii T, Yamakita T, Sato T, Tanaka S, S F: Resistance training improves insulin sensitivity in NIDDM subjects without altering maximal oxygen uptake. Diabetes Care. 1998, 21: 1353-1355. 10.2337/diacare.21.8.1353.

Castaneda C, Layne J, Munoz-Orians L, Gordon P, Walsmith J, Foldvari M, Roubenoff R, Tucker K, Nelson M: A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes. Diabetes Care. 2002, 25: 2335-2341. 10.2337/diacare.25.12.2335.

Balducci S, Zanuso S, Nicolucci A, Fernando F, Cavallo S, Cardelli P, Fallucca S, Alessi E, Letizia C, Jimenez A: Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutr Metab Cardiovasc Dis. 2009,

Arora E, Shenoy S, Sandhu J: Effects of resistance training on metabolic profile of adults with type 2 diabetes. Indian J Med Res. 2009, 129: 515-519.

Dunstan D, Daly R, Owen N, Jolley D, De Courten M, Shaw J, Zimmet P: High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes Care. 2002, 25: 1729-1736. 10.2337/diacare.25.10.1729.

Snowling N, Hopkins W: Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes Care. 2006, 29: 2518-2527. 10.2337/dc06-1317.

Cauza E, Hanusch-Enserer U, Strasser B, Ludvik B, Metz-Schimmerl S, Pacini G, Wagner O, Georg P, Prager R, Kostner K: The relative benefits of endurance and strength training on the metabolic factors and muscle function of people with type 2 diabetes mellitus. Arch Phys Med Rehabil. 2005, 86: 1527-1533. 10.1016/j.apmr.2005.01.007.

Sigal R, Kenny G, Boulé N, Wells G, Prud'homme D, Fortier M, Reid R, Tulloch H, Coyle D, Phillips P: Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007, 147 (6): 357-369.

Poehlman E, Denino W, Beckett T, Kinaman K, Dionne I, Dvorak R, Ades P: Effects of Endurance and Resistance Training on Total Daily Energy Expenditure in Young Women: A Controlled Randomized Trial. J Clin Endocrinol Metab. 2002, 87: 1004-1009. 10.1210/jc.87.3.1004.

de Mello Meirelles C, Gomes P: Acute effects of resistance exercise on energy expenditure: revisiting the impact of the training variables. Rev Bras Med Esporte. 2004, 10: 131-138.

Schrot R: Targeting Plasma Glucose: Preprandial Versus Postprandial. Clin Diab. 2004, 22: 169-172. 10.2337/diaclin.22.4.169.

Montgomery P, Green D, Etxebarria N, Pyne D, Saunders P, Minahan C: Validation of heart rate monitor-based predictions of oxygen uptake and energy expenditure. J Strength Cond Res. 2009, 23: 1489-1495. 10.1519/JSC.0b013e3181a39277.

Maiorana A, O'Driscoll G, Cheetham C, Dembo L, Stanton K, Goodman C, Taylor R, Green D: The effect of combined aerobic and resistance exercise on vascular function in type 2 diabetes. J Am Coll Cardiol. 2001, 38: 860-866. 10.1016/S0735-1097(01)01439-5.

Tokmakidis S, Zois C, Volaklis K, Kotsa K, Touvra A: The effects of a combined strength and aerobic exercise program on glucose control and insulin action in women with type 2 diabetes. Eur J Appl Physiol. 2004, 92: 437-442. 10.1007/s00421-004-1174-6.

Zois C, Tokmakidis S, Volaklis K, Kotsa K, Touvra A, Douda E, Yovos I: Lipoprotein profile, glycemic control and physical fitness after strength and aerobic training in post-menopausal women with type 2 diabetes. Eur J Appl Physiol. 2009, 106 (6): 901-907. 10.1007/s00421-009-1104-8.

Loimaala A, Groundstroem K, Rinne M, Nenonen A, Huhtala H, Parkkari J, Vuori I: Effect of long-term endurance and strength training on metabolic control and arterial elasticity in patients with type 2 diabetes mellitus. Am J Cardiol. 2009, 103 (7): 972-977. 10.1016/j.amjcard.2008.12.026.

Cauza E, Hanusch-Enserer U, Strasser B, Kostner K, Dunky A, Haber P: Strength and endurance training lead to different post exercise glucose profiles in diabetic participants using a continuous subcutaneous glucose monitoring system. Eur J Clin Invest. 2005, 35: 745-751. 10.1111/j.1365-2362.2005.01573.x.

Healy G, Dunstan D, Shaw J, Zimmet P, Owen N: Beneficial associations of physical activity with 2-h but not fasting blood glucose in Australian adults: the AusDiab study. Diabetes Care. 2006, 29: 2598-2694. 10.2337/dc06-0313.

Holten M, Zacho M, Gaster M, Juel C, Wojtaszewski J, Dela F: Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes. 2004, 53: 294-305. 10.2337/diabetes.53.2.294.

Cohen N, Dunstan D, Robinson C, Vulikh E, Zimmet P, Shaw J: Improved endothelial function following a 14-month resistance exercise training program in adults with type 2 diabetes. Diabetes Res Clin Pract. 2008, 79: 405-411. 10.1016/j.diabres.2007.07.010.

Cheung N, Cinnadaio N, Russo M, Marek S: A pilot randomised controlled trial of resistance exercise bands in the management of sedentary subjects with type 2 diabetes. Diabetes Res Clin Pract. 2009, 83 (3): e68-e71. 10.1016/j.diabres.2008.12.009.