Residual Paralysis: Does it Influence Outcome After Ambulatory Surgery?

Current Anesthesiology Reports - Tập 4 Số 4 - Trang 290-302 - 2014
Hassan Farhan1, Ingrid Moreno-Duarte1, Duncan McLean1, Matthias Eikermann2
1Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02115, USA
2Universitaet Duisburg-Essen, Essen, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cullen KA, Hall MJ, Golosinskiy A. Ambulatory surgery in the United States, 2006. National health statistics reports. 2009;(11):1–25. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19294964&retmode=ref&cmd=prlinks . Accessed 6 June 2014.

Mathis MR, Naughton NN, Shanks AM, et al. Patient selection for day case-eligible surgery. Anesthesiology. 2013;119(6):1310–21. doi: 10.1097/ALN.0000000000000005 .

Urman RD, Desai SP. History of anesthesia for ambulatory surgery. Curr Opin Anaesthesiol. 2012:1. doi: 10.1097/ACO.0b013e3283593100 .

Chung F. Discharge criteria—a new trend. Can J Anaesth. 1995;42(11):1056–8. doi: 10.1007/BF03011083 .

•• Mencke T, Echternach M, Kleinschmidt S, et al. Laryngeal morbidity and quality of tracheal intubation: a randomized controlled trial. Anesthesiology. 2003;98(5):1049–1056. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=12717124&retmode=ref&cmd=prlinks . Accessed 6 June 2014. This report was the first to demonstrate in a randomized controlled trial that neuromuscular blocking agents improve not only intubating conditions but also laryngeal outcome.

Alfille PH, Merritt C, Chamberlin NL, Eikermann M. Control of perioperative muscle strength during ambulatory surgery. Curr Opin Anaesthesiol. 2009;22(6):730–7. doi: 10.1097/ACO.0b013e328331d545 .

Raeder JC, Hole A. Out-patient laparoscopy in general anaesthesia with alfentanil and atracurium. A comparison with fentanyl and pancuronium. Acta Anaesthesiol Scand. 1986;30(1):30–4.

Sengupta P, Skacel M, Plantevin OM. Post-operative morbidity associated with the use of atracurium and vecuronium in day-case laparoscopy. Eur J Anaesthesiol. 1987;4(2):93–9.

Melnick B, Chalasani J, Uy NT, Phitayakorn P, Mallett SV, Rudy TE. Decreasing post-succinylcholine myalgia in outpatients. Can J Anaesth. 1987;34(3 (Pt 1)):238–241.

Sosis M, Broad T, Larijani GE, Marr AT. Comparison of atracurium and d-tubocurarine for prevention of succinylcholine myalgia. Anesth Analg. 1987;66(7):657–9.

Zuurmond WW, van Leeuwen L. Atracurium versus vecuronium: a comparison of recovery in outpatient arthroscopy. Can J Anaesth. 1988;35(2):139–42.

Trépanier CA, Brousseau C, Lacerte L. Myalgia in outpatient surgery: comparison of atracurium and succinylcholine. Can J Anaesth. 1988;35(3 (Pt 1)):255–258.

Zahl K, Apfelbaum JL. Muscle pain occurs after outpatient laparoscopy despite the substitution of vecuronium for succinylcholine. Anesthesiology. 1989;70(3):408–11.

Luyk NH, Weaver JM, Quinn C, Wilson S, Beck FM. Comparative trial of succinylcholine versus low dose atracurium-lidocaine combination for intubation in short outpatient procedures. Anesth Prog. 1990;37(5):238–43.

Poler SM, Watcha MF, White PF. Mivacurium as an alternative to succinylcholine during outpatient laparoscopy. J Clin Anesth. 1992;4(2):127–33.

Laxenaire MC. Drugs and other agents involved in anaphylactic shock occurring during anaesthesia. A French multicenter epidemiological inquiry. Ann Fr Anesth Reanim. 1993;12(2):91–6.

Tang J, Joshi GP, White PF. Comparison of rocuronium and mivacurium to succinylcholine during outpatient laparoscopic surgery. Anesth Analg. 1996;82(5):994–8.

Whalley DG, Maurer WG, Knapik AL, Estafanous FG. Comparison of neuromuscular effects, efficacy and safety of rocuronium and atracurium in ambulatory anaesthesia. Can J Anaesth. 1998;45(10):954–9. doi: 10.1007/BF03012303 .

Savarese JJ, Ali HH, Basta SJ, et al. The clinical neuromuscular pharmacology of mivacurium chloride (BW B1090U). A short-acting nondepolarizing ester neuromuscular blocking drug. Anesthesiology. 1988;68(5):723–32.

• Debaene B, Plaud B, Dilly M-P, Donati F. Residual paralysis in the PACU after a single intubating dose of nondepolarizing muscle relaxant with an intermediate duration of action. Anesthesiology. 2003;98(5):1042–1048. This landmark paper showed that residual paralysis may still be relevant 2 h after injection of a single dose of intermediate-acting neuromuscular blocking agents.

Cammu G, De Witte J, De Veylder J, et al. Postoperative residual paralysis in outpatients versus inpatients. Anesth Analg. 2006;102(2):426–9. doi: 10.1213/01.ane.0000195543.61123.1f .

Pendeville PE, Lois F, Scholtes J-L. A comparison of intubation conditions and time-course of action with rocuronium and mivacurium for day case anaesthesia. Eur J Anaesthesiol. 2007;24(6):546–50. doi: 10.1017/S0265021506002341 .

•• Sundman E, Witt H, Olsson R, Ekberg O, Kuylenstierna R, Eriksson LI. The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans: pharyngeal videoradiography and simultaneous manometry after atracurium. Anesthesiology. 2000;92(4):977–984. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=10754616&retmode=ref&cmd=prlinks . Accessed 6 June 2014. This milestone paper identified impaired pharyngeal contraction coordination as a mechanism of residual paralysis associated aspiration.

Eriksson LI, Sundman E, Olsson R, et al. Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans: simultaneous videomanometry and mechanomyography of awake human volunteers. Anesthesiology. 1997;87(5):1035–43.

Eikermann M, Groeben H, Hüsing J, Peters J. Accelerometry of adductor pollicis muscle predicts recovery of respiratory function from neuromuscular blockade. Anesthesiology. 2003;98(6):1333–7.

•• Murphy GS, Szokol JW, Avram MJ, et al. Postoperative Residual Neuromuscular Blockade Is Associated with Impaired Clinical Recovery. Anesth Analg. 2013;117(1):133–141. doi: 10.1213/ANE.0b013e3182742e75 . This milestone paper closed the gap between respiratory medicine studies conducted in partially paralyzed volunteers and outcomes research trials, demonstrating that residual paralysis translates to impaired postoperative respiratory function.

Hayes AH, Mirakhur RK, Breslin DS, Reid JE, McCourt KC. Postoperative residual block after intermediate-acting neuromuscular blocking drugs. Anaesthesia. 2001;56(4):312–8. doi: 10.1046/j.1365-2044.2001.01921.x .

Maybauer DM, Geldner G, Blobner M, et al. Incidence and duration of residual paralysis at the end of surgery after multiple administrations of cisatracurium and rocuronium. Anaesthesia. 2007;62(1):12–7. doi: 10.1111/j.1365-2044.2006.04862.x .

Kim KS, Lew SH, Cho HY, Cheong AMA. Residual paralysis induced by either vecuronium or rocuronium after reversal with pyridostigmine. Anesth Analg. 2002;95(6):1656–60. doi: 10.1097/00000539-200212000-00033 .

Butterly A, Bittner EA, George E, Sandberg WS, Eikermann M, Schmidt U. Postoperative residual curarization from intermediate-acting neuromuscular blocking agents delays recovery room discharge. Br J Anaesth. 2010;105(3):304–9. doi: 10.1093/bja/aeq157 .

Berg H, Roed J, Viby-Mogensen J, et al. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand. 1997;41(9):1095–1103. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=9366929&retmode=ref&cmd=prlinks . Accessed 6 June 2014.

Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg. 2008;107(1):130–7. doi: 10.1213/ane.0b013e31816d1268 .

Warner MA, Shields SE, Chute CG. Major morbidity and mortality within 1 month of ambulatory surgery and anesthesia. JAMA. 1993;270(12):1437–1441. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=8371443&retmode=ref&cmd=prlinks . Accessed 6 June 2014.

Chan K-S, Tan C-K, Fang C-S, et al. Readmission to the intensive care unit: an indicator that reflects the potential risks of morbidity and mortality of surgical patients in the intensive care unit. Surg Today. 2009;39(4):295–9. doi: 10.1007/s00595-008-3876-6 .

Eriksson LI, Sato M, Severinghaus JW. Effect of a vecuronium-induced partial neuromuscular block on hypoxic ventilatory response. Anesthesiology. 1993;78(4):693–699. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=8096684&retmode=ref&cmd=prlinks . Accessed 6 June 2014.

Eriksson LI. Reduced hypoxic chemosensitivity in partially paralysed man. A new property of muscle relaxants? Acta Anaesthesiol Scand. 1996;40(5):520–3.

Eriksson LI. The effects of residual neuromuscular blockade and volatile anesthetics on the control of ventilation. Anesth Analg. 1999;89(1):243–51. doi: 10.1213/00000539-199907000-00045 .

Isono S. Obstructive sleep apnea of obese adults: pathophysiology and perioperative airway management. Anesthesiology. 2009;110(4):908–21. doi: 10.1097/ALN.0b013e31819c74be .

Isono S, Greif R, Mort TC. Airway research: the current status and future directions. Anaesthesia. 2011;66(Suppl 2):3–10. doi: 10.1111/j.1365-2044.2011.06928.x .

Eikermann M, Vogt FM, Herbstreit F, Vahid-Dastgerdi M, Zenge MO, Ochterbeck C, de Greiff A, et al. The predisposition to inspiratory upper airway collapse during partial neuromuscular blockade. Am J Respir Crit Care Med. 2007;175(1):9–15. doi: 10.1164/rccm.200512-1862OC .

Herbstreit F, Peters J, Eikermann M. Impaired upper airway integrity by residual neuromuscular blockade: increased airway collapsibility and blunted genioglossus muscle activity in response to negative pharyngeal pressure. Anesthesiology. 2009;110(6):1253–60. doi: 10.1097/ALN.0b013e31819faa71 .

•• Mirzakhani H, Williams J-N, Mello J, et al. Muscle weakness predicts pharyngeal dysfunction and symptomatic aspiration in long-term ventilated patients. Anesthesiology. 2013;119(2):389–397. doi: 10.1097/ALN.0b013e31829373fe . This paper demonstrates that muscle weakness is an independent predictor or symptomatic aspiration in the intensive care unit.

Bissinger U, Schimek F, Lenz G. Postoperative residual paralysis and respiratory status: a comparative study of pancuronium and vecuronium. Physiol Res/Acad Sci Bohemoslovaca. 2000;49(4):455–462. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=11072806&retmode=ref&cmd=prlinks . Accessed 6 June 2014.

•• Grosse-Sundrup M, Henneman JP, Sandberg WS, et al. Intermediate acting non-depolarizing neuromuscular blocking agents and risk of postoperative respiratory complications: prospective propensity score matched cohort study. BMJ. 2012;345(oct15 5):e6329–e6329. doi: 10.1136/bmj.e6329 . This paper showed that the use of intermediate-acting muscle relaxants is an independent predictor of severe postoperative respiratory complications. The data suggest that meticulous titration of neuromuscular blocking agents and reversal drugs is required to improve respiratory safety of patients who received NMBAs.

Tagaito Y, Isono S, Remmers JE, Tanaka A, Nishino T. Lung volume and collapsibility of the passive pharynx in patients with sleep-disordered breathing. J Appl Physiol. 2007;103(4):1379–85. doi: 10.1152/japplphysiol.00026.2007 .

Isono S. Obesity and obstructive sleep apnoea: mechanisms for increased collapsibility of the passive pharyngeal airway. Respirology. 2012;17(1):32–42. doi: 10.1111/j.1440-1843.2011.02093.x .

Dhonneur G, Combes X, Leroux B, Duvaldestin P. Postoperative obstructive apnea. Anesth Analg. 1999;89(3):762–7.

• Eikermann M, Gerwig M, Hasselmann C, Fiedler G, Peters J. Impaired neuromuscular transmission after recovery of the train-of-four ratio. Acta Anaesthesiol Scand. 2007;51(2):226–234. doi: 10.1111/j.1399-6576.2006.01228.x . This study shows that even after recovery of the train-of-four ration to 0.9, postoperative skeletal muscle strength is substantially impaired postoperatively as a consequence of lingering effects of neuromuscular blocking agents and anesthetics which induce a tetanic fade.

Dimick JB, Chen SL, Taheri PA, Henderson WG, Khuri SF, Campbell DA. Hospital costs associated with surgical complications: a report from the private-sector National Surgical Quality Improvement Program. J Am Coll Surg. 2004;199(4):531–7. doi: 10.1016/j.jamcollsurg.2004.05.276 .

Ramachandran SK, Nafiu OO, Ghaferi A, Tremper KK, Shanks A, Kheterpal S. Independent predictors and outcomes of unanticipated early postoperative tracheal intubation after nonemergent, noncardiac surgery. Anesthesiology. 2011;115(1):44–53. doi: 10.1097/ALN.0b013e31821cf6de .

Agarwal A, Pandey R, Dhiraaj S, et al. The effect of epidural bupivacaine on induction and maintenance doses of propofol (evaluated by bispectral index) and maintenance doses of fentanyl and vecuronium. Anesth Analg. 2004;99(6):1684–1688. doi: 10.1213/01.ANE.0000136422.70531.5A .

Suzuki T, Mizutani H, Ishikawa K, Miyake E, Saeki S, Ogawa S. Epidurally administered mepivacaine delays recovery of train-of-four ratio from vecuronium-induced neuromuscular block. Br J Anaesth. 2007;99(5):721–5. doi: 10.1093/bja/aem253 .

Williams MT, Rice I, Ewen SP, Elliott SM. A comparison of the effect of two anaesthetic techniques on surgical conditions during gynaecological laparoscopy. Anaesthesia. 2003;58(6):574–8.

Viby-Mogensen J, Jørgensen BC, Ording H. Residual curarization in the recovery room. Anesthesiology. 1979;50(6):539–541. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=156513&retmode=ref&cmd=prlinks . Accessed 6 June 2014.

Naguib M, Kopman AF, Ensor JE. Neuromuscular monitoring and postoperative residual curarisation: a meta-analysis. Br J Anaesth. 2007;98(3):302–16. doi: 10.1093/bja/ael386 .

Bevan DR, Smith CE, Donati F. Postoperative neuromuscular blockade: a comparison between atracurium, vecuronium, and pancuronium. Anesthesiology. 1988;69(2):272–276. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=2900612&retmode=ref&cmd=prlinks . Accessed 6 June 2014.

McLean D, Igumenscheva A, Ladha K, et al. Dose-dependent association between intermediate-acting neuromuscular blocking agents and postoperative respiratory complications: a prospective analysis of data on file. ASA abstract (abstract no. JS09).

Karcioglu O, Arnold J, Topacoglu H, Ozucelik DN, Kiran S, Sonmez N. Succinylcholine or rocuronium? A meta-analysis of the effects on intubation conditions. Int J Clin Pract. 2006;60(12):1638–46. doi: 10.1111/j.1742-1241.2005.00685.x .

Perry JJ, Lee JS, Sillberg VAH, Wells GA. Rocuronium versus succinylcholine for rapid sequence induction intubation. Cochrane Database Syst Rev. 2008;16(2):CD002788. doi: 10.1002/14651858.CD002788.pub2 .

Puura AI, Rorarius MG, Manninen P, Hoppu S, Hopput S, Baer GA. The costs of intense neuromuscular block for anesthesia during endolaryngeal procedures due to waiting time. Anesth Analg. 1999;88(6):1335–1339. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=10357341&retmode=ref&cmd=prlinks . Accessed 6 June 2014.

Østergaard D, Viby-Mogensen J, Rasmussen SN, Gätke MR, Varin F. Pharmacokinetics and pharmacodynamics of mivacurium in patients phenotypically homozygous for the atypical plasma cholinesterase variant: effect of injection of human cholinesterase. Anesthesiology. 2005;102(6):1124–32.

•• Murphy GS, Brull SJ. Residual neuromuscular block: lessons unlearned part i: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg. 2010;111(1):120–128. doi: 10.1213/ANE.0b013e3181da832d . Outstanding review article demonstrating the “blind spot” in Anesthesiologists perception of an adequate recovery from NMBA effects.

Lundstrøm LH, Møller AM, Rosenstock C, et al. Avoidance of neuromuscular blocking agents may increase the risk of difficult tracheal intubation: a cohort study of 103 812 consecutive adult patients recorded in the Danish Anaesthesia Database. Br J Anaesth. 2009;103(2):283–90. doi: 10.1093/bja/aep124 .

Hemmerling TM, Donati F. Neuromuscular blockade at the larynx, the diaphragm and the corrugator supercilii muscle: a review. Can J Anaesth. 2003;50(8):779–94. doi: 10.1007/BF03019373 .

Lebrault C, Chauvin M, Guirimand F, Duvaldestin P. Relative potency of vecuronium on the diaphragm and the adductor pollicis. Br J Anaesth. 1989;63(4):389–92.

Cantineau JP, Porte F, Dhonneur G, Duvaldestin P. Neuromuscular effects of rocuronium on the diaphragm and adductor pollicis muscles in anesthetized patients. Anesthesiology. 1994;81(3):585–90.

Ibebunjo C, Hall LW. Succinylcholine and vecuronium blockade of the diaphragm, laryngeal and limb muscles in the anaesthetized goat. Can J Anaesth. 1994;41(1):36–42. doi: 10.1007/BF03009659 .

Abdulatif M, Taylouni E. Surgeon-controlled mivacurium administration during elective Caesarean section. Can J Anaesth. 1995;42(2):96–102. doi: 10.1007/BF03028259 .

Gueret G, Rossignol B, Kiss G, et al. Is muscle relaxant necessary for cardiac surgery? Anesth Analg. 2004;99(5):1330–1333. doi: 10.1213/01.ANE.0000132984.56312.FF .

Fawcett WJ, Dash A, Francis GA, Liban JB, Cashman JN. Recovery from neuromuscular blockade: residual curarisation following atracurium or vecuronium by bolus dosing or infusions. Acta Anaesthesiol Scand. 1995;39(3):288–293. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=7793202&retmode=ref&cmd=prlinks . Accessed 6 June 2014.

Viby-Mogensen J, Jensen NH, Engbaek J, Ording H, Skovgaard LT, Chraemmer-Jørgensen B. Tactile and visual evaluation of the response to train-of-four nerve stimulation. Anesthesiology. 1985;63(4):440–443. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=4037404&retmode=ref&cmd=prlinks . Accessed 6 June 2014.

Tactile evaluation of the response to double burst stimulation decreases, but does not eliminate, the problem of postoperative residual paralysis. Acta Anaesthesiol Scand. 1998;42(10):1168–1174. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=9834799&retmode=ref&cmd=prlinks . Accessed 6 June 2014.

Capron F, Fortier L-P, Racine SB, Donati FO. Tactile fade detection with hand or wrist stimulation using train-of-four, double-burst stimulation, 50-Hertz tetanus, 100-Hertz tetanus, and acceleromyography. Anesth Analg. 2006;102(5):1578–84. doi: 10.1213/01.ane.0000204288.24395.38 .

Kopman AF, Kopman DJ, Ng J, Zank LM. Antagonism of profound cisatracurium and rocuronium block: the role of objective assessment of neuromuscular function. J Clin Anesth. 2005;17(1):30–5.

Claudius C, Viby-Mogensen J. Acceleromyography for use in scientific and clinical practice. Anesthesiology. 2008;108(6):1117–40. doi: 10.1097/ALN.0b013e318173f62f .

•• Murphy GS, Szokol JW, Marymont JH, et al. Intraoperative Acceleromyographic Monitoring Reduces the Risk of Residual Neuromuscular Blockade and Adverse Respiratory Events in the Postanesthesia Care Unit. Anesthesiology. 2008;109(3):389–398. doi: 10.1097/ALN.0b013e318182af3b . This paper demonstrated first time that rigorous application of quantitative NMT monitoring reduces the likelyhood of postoperative residual neuromuscular blockade and associated respiratory side effects.

Murphy GS, Szokol JW, Avram MJ, et al. Intraoperative acceleromyography monitoring reduces symptoms of muscle weakness and improves quality of recovery in the early postoperative period. Anesthesiology. 2011;115(5):946–54. doi: 10.1097/ALN.0b013e3182342840 .

Fuchs-Buder T, Sirieix D, Schmartz D, Plaud B. Monitoring of neuromuscular block by acceleromyography: concepts, applications and limits of use. Ann Fr Anesth Reanim. 2012;31(11):922–5. doi: 10.1016/j.annfar.2012.08.015 .

Naguib M, Kopman AF, Lien CA, Hunter JM, Lopez A, Brull SJ. A survey of current management of neuromuscular block in the United States and Europe. Anesth Analg. 2010;111(1):110–9. doi: 10.1213/ANE.0b013e3181c07428 .

El-Orbany M, Ali HH, Baraka A, Salem MR. Residual neuromuscular block should, and can, be a “never event”. Anesth Analg. 2014;118(3):691. doi: 10.1213/ANE.0000000000000090 .

Bevan DR, Donati F, Kopman AF. Reversal of neuromuscular blockade. Anesthesiology. 1992;77(4):785–805. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=1416176&retmode=ref&cmd=prlinks . Accessed 6 June 2014.

Fuchs-Buder T, Baumann C, De Guis J, Guerci P, Meistelman C. Low-dose neostigmine to antagonise shallow atracurium neuromuscular block during inhalational anaesthesia: a prospective randomised controlled trial. Eur J Anaesthesiol. 2013;30(10):594–8. doi: 10.1097/EJA.0b013e3283631652 .

• Kopman AF, Eikermann M. Antagonism of non-depolarising neuromuscular block: current practice. Anaesthesia. 2009;64(Suppl 1):22–30. doi: 10.1111/j.1365-2044.2008.05867.x . This paper provides a tentative algorithm on how to titrate neostigmine dose to the magnitude of residual blockade quantified by train-of-four monitoring.

Della Rocca G, Pompei L, Pagan DE, Paganis C, Tesoro S, Mendola C, Boninsegni P, et al. Reversal of rocuronium induced neuromuscular block with sugammadex or neostigmine: a large observational study. Acta Anaesthesiol Scand. 2013;57(9):1138–1145. doi: 10.1111/aas.12155 .

Della Rocca G, DI Marco P, Beretta L, De Gaudio AR, Ori C, Mastronardi P. Do we need to use sugammadex at the end of a general anesthesia to reverse the action of neuromuscular bloking agents? Position paper on sugammadex use. Minerva Anestesiol. 2013;79(6):661–666. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23192221&retmode=ref&cmd=prlinks . Accessed 6 June 2014.

Sacan O, White PF, Tufanogullari B, Klein K. Sugammadex reversal of rocuronium-induced neuromuscular blockade: a comparison with neostigmine-glycopyrrolate and edrophonium-atropine. Anesth Analg. 2007;104(3):569–74. doi: 10.1213/01.ane.0000248224.42707.48 .

Hazizaj A, Hatija A. Bronchospasm caused by neostigmine. Eur J Anaesthesiol. 2006;23(1):85–6. doi: 10.1017/S0265021505241820 .

Bjerke RJ, Mangione MP. Asystole after intravenous neostigmine in a heart transplant recipient. Can J Anaesth. 2001;48(3):305–7. doi: 10.1007/BF03019764 .

Sawasdiwipachai P, Laussen PC, McGowan FX, Smoot L, Casta A. Cardiac arrest after neuromuscular blockade reversal in a heart transplant infant. Anesthesiology. 2007;107(4):663–5. doi: 10.1097/01.anes.0000282140.68060.fa .

Caldwell JE. Reversal of residual neuromuscular block with neostigmine at one to four hours after a single intubating dose of vecuronium. Anesth Analg. 1995;80(6):1168–1174. Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=7762847&retmode=ref&cmd=prlinks . Accessed 6 June 2014.

• Eikermann M, Fassbender P, Malhotra A, et al. Unwarranted administration of acetylcholinesterase inhibitors can impair genioglossus and diaphragm muscle function. Anesthesiology. 2007;107(4):621–629. doi: 10.1097/01.anes.0000281928.88997.95 . This preclinical paper demonstrated that neostigmine administration following recovery from neuromuscular blockade dose-dependently impairs respiratory muscle function and breathing.

•• Herbstreit F, Zigrahn D, Ochterbeck C, Peters J, Eikermann M. Neostigmine/glycopyrrolate administered after recovery from neuromuscular block increases upper airway collapsibility by decreasing genioglossus muscle activity in response to negative pharyngeal pressure. Anesthesiology. 2010;113(6):1280–1288. doi: 10.1097/ALN.0b013e3181f70f3d . This paper demonstrates that neostigmine given following recovery from neuromuscular blockade impairs upper airway muscle function and increases airway collapsibility.

Caldwell JE, Miller RD. Clinical implications of sugammadex. Anaesthesia. 2009;64(s1):66–72. doi: 10.1111/j.1365-2044.2008.05872.x .

Gaszynski T, Szewczyk T, Gaszynski W. Randomized comparison of sugammadex and neostigmine for reversal of rocuronium-induced muscle relaxation in morbidly obese undergoing general anaesthesia. Br J Anaesth. 2012;108(2):236–9. doi: 10.1093/bja/aer330 .

• Ma D, Zhang B, Hoffmann U, Sundrup MG, Eikermann M, Isaacs L. Acyclic cucurbit[n]uril-type molecular containers bind neuromuscular blocking agents in vitro and reverse neuromuscular block in vivo. Angew Chem Int Ed Engl. 2012;51(45):11358–11362. doi: 10.1002/anie.201206031 . First description of the development of calabadions, acyclic cucurbit[n]uril-type molecular containers which bind neuromuscular blocking agents in vitro and reverse neuromuscular block in vivo.

• Hoffmann U, Grosse-Sundrup M, Eikermann-Haerter K, et al. Calabadion: a new agent to reverse the effects of benzylisoquinoline and steroidal neuromuscular-blocking agents. Anesthesiology. 2013;119(2):317–325. doi: 10.1097/ALN.0b013e3182910213 . Describes calabadion, a new broad-spectum drug to reverse the effects of cisatracurium and rocuronium.

Moreno-Duarte I, Haerter F, Simons J, et al. Calabadion II reverses steroidal neuromuscular blocking agents faster than Sugammadex and reverses the effects of benzylisoquinolines, without altering the effects of succinylcholine. IARS Abstract presented in May 2014. Anesth Analg. 2014;118:S1–139 (abstract no. S-50). http://www.iars.org/assets/1/7/AM14_AbstractSupp_F.pdf .