Residual Deep Convolutional Neural Network Predicts MGMT Methylation Status

Journal of Digital Imaging - Tập 30 Số 5 - Trang 622-628 - 2017
Panagiotis Korfiatis1, Timothy L. Kline1, Daniel H. Lachance2, Ian F. Parney3, Jan C. Buckner4, Bradley J. Erickson1
1Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
2Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
3Department of Neurologic Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
4Department of Medical Oncology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Johnson DR, O’Neill BP: Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol 107:359–364, 2011

Ellingson BM, Wen PY, van den Bent MJ, Cloughesy TF: Pros and cons of current brain tumor imaging. Neuro Oncol 16(Suppl 7):vii2–vi11, 2014

Weizman L, Ben-Sira L, Joskowicz L, Aizenstein O, Shofty B, Constantini S, Ben-Bashat D: Prediction of brain MR scans in longitudinal tumor follow-up studies. Med Image Comput Comput Assist Interv 15:179–187, 2012

Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, Miller DC, Golfinos JG, Zagzag D, Johnson G: Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247:490–498, 2008

Jain R, Poisson LM, Gutman D et al.: Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272:484–493, 2014

Zhang K, Wang X-Q, Zhou B, Zhang L: The prognostic value of MGMT promoter methylation in glioblastoma multiforme: a meta-analysis. Fam Cancer 12:449–458, 2013

Li H, Li J, Cheng G, Zhang J, Li X: IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy. Clin Neurol Neurosurg 151:31–36, 2016

Rivera AL, Pelloski CE, Gilbert MR, Colman H, De La Cruz C, Sulman EP, Bekele BN, Aldape KD: MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol 12:116–121, 2010

Ellingson BM: Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr Neurol Neurosci Rep 15:506, 2015

Rundle-Thiele D, Day B, Stringer B et al.: Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: importance of analytical method. J Med Radiat Sci 62:92–98, 2015

Drabycz S, Roldán G, de Robles P, Adler D, McIntyre JB, Magliocco AM, Cairncross JG, Mitchell JR: An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage 49:1398–1405, 2010

Levner I, Drabycz S, Roldan G, De Robles P, Gregory Cairncross J, Mitchell R: Predicting MGMT Methylation Status of Glioblastomas from MRI Texture. Med Image Comput Comput Assist Interv. 2009;12(Pt 2):522–530

Moon W-J, Choi JW, Roh HG, Lim SD, Koh Y-C: Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiology 54:555–563, 2012

Ahn SS, Shin N-Y, Chang JH, Kim SH, Kim EH, Kim DW, Lee S-K: Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging. J Neurosurg 121:367–373, 2014

Gupta A, Omuro AMP, Shah AD, Graber JJ, Shi W, Zhang Z, Young RJ: Continuing the search for MR imaging biomarkers for MGMT promoter methylation status: conventional and perfusion MRI revisited. Neuroradiology 54:641–643, 2012

Kanas VG, Zacharaki EI, Thomas GA, Zinn PO, Megalooikonomou V, Colen RR: Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma. Comput Methods Programs Biomed 140:249–257, 2017

Korfiatis P, Kline TL, Coufalova L, Lachance DH, Parney IF, Carter RE, Buckner JC, Erickson BJ: MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys 43:2835, 2016

Eckel-Passow JE, Lachance DH, Molinaro AM et al.: Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508, 2015

Greenspan H, van Ginneken B, Summers RM: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35:1153–1159, 2016

Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35:1207–1216, 2016

Dalmış MU, Litjens G, Holland K, Setio A, Mann R, Karssemeijer N, Gubern-Mérida A: Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Med Phys 44:533–546, 2017

Dhungel N, Carneiro G, Bradley AP: A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med Image Anal 37:114–128, 2017

Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R: Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal 36:41–51, 2017

Yan Z, Zhan Y, Zhang S, Metaxas D, Zhou XS: Multi-Instance Multi-Stage Deep Learning for Medical Image Recognition. IEEE Transactions On Medical Imaging. doi: 10.1109/TMI.2016.2524985

Rajkomar A, Lingam S, Taylor AG, Blum M, Mongan J: High-throughput classification of radiographs using deep convolutional neural networks. J Digit Imaging 30:95–101, 2017

Korfiatis PD, Kline TL, Blezek DJ, Langer SG, Ryan WJ, Erickson BJ: MIRMAID: a content management system for medical image analysis research. Radiographics 35:1461–1468, 2015

Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC: N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320, 2010

Juntu J, Sijbers J, Dyck D, Gielen J: Bias Field Correction for MRI Images. In: Advances in Soft Computing. Springer. pp 543–551

He K, Zhang X, Ren S, Sun J: Deep Residual Learning for Image Recognition. arXiv [cs.CV]. 2015. https://arxiv.org/abs/1512.03385

He K, Zhang X, Ren S, Sun J: Identity Mappings in Deep Residual Networks. In: Lecture Notes in Computer Science. 2016, pp 630–645. https://link.springer.com/chapter/10.1007/978-3-319-46493-0_38

He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas. 2016, pp 770–778

He K, Zhang X, Ren S, Sun J: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015 I.E. International Conference on Computer Vision (ICCV), 2015. doi: 10.1109/iccv.2015.123

loffe S, Szegedy C: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv [cs.LG]. 2015. https://arxiv.org/abs/1502.03167

Dietterich TG: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10:1895–1923, 1998 1998

Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, Vol. 8 (1936), pp. 3–62 Key: citeulike:1778138

Veit A, Wilber M, Belongie S: Residual Networks Behave Like Ensembles of Relatively Shallow Networks. arXiv [cs.CV]. 2016. https://arxiv.org/abs/1605.06431

Nyúl LG, Udupa JK: On standardizing the MR image intensity scale. Magn Reson Med 42:1072–1081, 1999