Residual Closeness of Graphs with Given Parameters
Tóm tắt
Robustness of the network topology is a key aspect in the design of computer networks. Residual closeness is a new graph-theoretic concept defined as a measure of network robustness due to the failure of individual vertices. We identify those graphs with maximum residual closeness among connected graphs with fixed connectivity, edge connectivity and bipartiteness, respectively.
Tài liệu tham khảo
Frank, H., Frisch, I.T.: Analysis and design of survivable networks. IEEE Trans. Commun. Technol. 18(5), 501–519 (1970)
Chvatal, V.: Tough graphs and Hamiltonian circuits. Discrete Math. 5(3), 215–228 (1973)
Jung, H.A.: On a class of posets and the corresponding comparability graphs. J. Combin. Theory Ser. B 24(2), 125–133 (1978)
Woodall, D.R.: The binding number of a graph and its Anderson number. J. Combin. Theory Ser. B 15(3), 225–255 (1973)
Dangalchev, C.: Residual closeness in networks. Physica A 365(2), 556–564 (2006)
Buckley, F., Harary, F.: Distance in Graphs. Addison-Wesley Publishing Company, Redwood City (1990)
Jackson, M.O.: Social and Economic Networks. Princeton University Press, Princeton (2008)
Dangalchev, C.: Residual closeness and generalized closeness. Int. J. Found. Comput. Sci. 22(8), 1939–1948 (2011)
Dangalchev, C.: Residual closeness of generalized thorn graphs. Fundam. Inform. 162(1), 1–15 (2018)
Aytac, A., Odabas, Z.N.: Residual closeness of wheels and related networks. Int. J. Found. Comput. Sci. 22(5), 1229–1240 (2011)
Odabas, Z.N., Aytac, A.: Residual closeness in cycles and related networks. Fundam. Inform. 124(3), 297–307 (2013)
Aytac, A., Berberler, Z.N.O.: Robustness of regular caterpillars. Int. J. Found. Comput. Sci. 28(7), 835–841 (2017)
Aytac, A., Berberler, Z.N.O.: Residual closeness for helm and sunflower graphs. TWMS J. Appl. Eng. Math. 7(2), 209–220 (2017)
Aytac, A., Odabas Berberler, Z.N.: Network robustness and residual closeness. RAIRO Oper. Res. 52(3), 839–847 (2018)
Rupnik Poklukar, D., Žerovnik, J.: Networks with extremal closeness. Fundam. Inform. 167(3), 219–234 (2019)
Zhou, B., Li, Z., Guo, H.: Extremal results on vertex and link residual closeness. Int. J. Found. Comput. Sci. 32(8), 921–941 (2021)
Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)
Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)
Fallat, S., Fan, Y.: Bipartiteness and the least eigenvalue of signless Laplacian of graphs. Linear Algebra Appl. 436(9), 3254–3267 (2012)
Yarahmadi, Z., Ashrafi, A.R.: Extremal properties of the bipartite vertex frustration of graphs. Appl. Math. Lett. 24(11), 1774–1777 (2011)
Boccaletti, S., Buldú, J., Criado, R., Flores, J., Latora, V., Pello, J.: Multiscale vulnerability of complex networks. Chaos 17(4), 043110 (2007)
Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E. 65(5), 056109 (2002)