Residence of<i>Streptococcus pneumoniae</i>and<i>Moraxella catarrhalis</i>within polymicrobial biofilm promotes antibiotic resistance and bacterial persistence<i>in vivo</i>

Pathogens and Disease - Tập 70 Số 3 - Trang 280-288 - 2014
Antonia C. Perez1, Bing Pang1, Lauren B. King1, Tan Li Peng1, Kyle A. Murrah1, Jennifer L. Reimche1, J. Thomas Wren1, Stephen H. Richardson1, Uma Ghandi1, W. Edward Swords1
1Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Armbruster, 2010, Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling, MBio, 1, 102, 10.1128/mBio.00102-10

Balder, 2013, Moraxella catarrhalis uses a twin-arginine translocation system to secrete the beta-lactamase BRO-2, BMC Microbiol, 13, 140, 10.1186/1471-2180-13-140

Bernhard, 2012, Molecular pathogenesis of infections caused by Moraxella catarrhalis in children, Swiss Med Wkly, 142, w13694

Bootsma, 1996, Molecular characterization of the BRO beta-lactamase of Moraxella (Branhamella) catarrhalis, Antimicrob Agents Chemother, 40, 966, 10.1128/AAC.40.4.966

Briles, 1992, Strong association between capsular type and virulence for mice among human isolates of Streptococcus pneumoniae, Infect Immun, 60, 111, 10.1128/IAI.60.1.111-116.1992

Brook, 2009, The role of beta-lactamase-producing-bacteria in mixed infections, BMC Infect Dis, 9, 202, 10.1186/1471-2334-9-202

Budhani, 1997, The use of Sorbarod biofilms to study the antimicrobial susceptibility of a strain of Streptococcus pneumoniae, J Antimicrob Chemother, 40, 601, 10.1093/jac/40.4.601

Budhani, 1998, Interaction of Streptococcus pneumoniae and Moraxella catarrhalis: investigation of the indirect pathogenic role of beta-lactamase-producing Moraxellae by use of a continuous-culture biofilm system, Antimicrob Agents Chemother, 42, 2521, 10.1128/AAC.42.10.2521

Chiavolini, 2008, Animal models of Streptococcus pneumoniae disease, Clin Microbiol Rev, 21, 666, 10.1128/CMR.00012-08

Chonmaitree, 2008, Viral upper respiratory tract infection and otitis media complication in young children, Clin Infect Dis, 46, 815, 10.1086/528685

Ehrlich, 2002, Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media, JAMA, 287, 1710, 10.1001/jama.287.13.1710

Eliasson, 1992, Characterization of cell-bound papain-soluble beta-lactamases in BRO-1 and BRO-2 producing strains of Moraxella (Branhamella) catarrhalis and Moraxella nonliquefaciens, Eur J Clin Microbiol Infect Dis, 11, 313, 10.1007/BF01962070

Furano, 2005, Identification of a conserved Moraxella catarrhalis haemoglobin-utilization protein, MhuA, Microbiology, 151, 1151, 10.1099/mic.0.27820-0

Gilson, 1995, AinS and a new family of autoinducer synthesis proteins, J Bacteriol, 177, 6946, 10.1128/jb.177.23.6946-6951.1995

Hall-Stoodley, 2006, Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media, JAMA, 296, 202, 10.1001/jama.296.2.202

Harrison, 2009, Susceptibilities of Haemophilus influenzae, Streptococcus pneumoniae, including serotype 19A, and Moraxella catarrhalis paediatric isolates from 2005 to 2007 to commonly used antibiotics, J Antimicrob Chemother, 63, 511, 10.1093/jac/dkn538

Holder, 2012, One third of middle ear effusions from children undergoing tympanostomy tube placement had multiple bacterial pathogens, BMC Pediatr, 12, 87, 10.1186/1471-2431-12-87

Hoopman, 2012, Use of the chinchilla model for nasopharyngeal colonization to study gene expression by Moraxella catarrhalis, Infect Immun, 80, 982, 10.1128/IAI.05918-11

Kaieda, 2005, In vitro investigation of the indirect pathogenicity of beta-lactamase-producing microorganisms in the nasopharyngeal microflora, Int J Pediatr Otorhinolaryngol, 69, 479, 10.1016/j.ijporl.2004.11.013

Klein, 2000, The burden of otitis media, Vaccine, 19, S2, 10.1016/S0264-410X(00)00271-1

Krishnamurthy, 2009, The incidence of Streptococcus pneumoniae otitis media is affected by the polymicrobial environment particularly Moraxella catarrhalis in a mouse nasal colonisation model, Microbes Infect, 11, 545, 10.1016/j.micinf.2009.03.001

Kuo, 1994, Multiple N-acyl-L-homoserine lactone autoinducers of luminescence in the marine symbiotic bacterium Vibrio fischeri, J Bacteriol, 176, 7558, 10.1128/jb.176.24.7558-7565.1994

Maddocks, 1980, Indirect pathogenicity, J Antimicrob Chemother, 6, 307, 10.1093/jac/6.3.307

Maddocks, 1969, “Indirect pathogenicity” of penicillinase-producing enterobacteria in chronic bronchial infections, Lancet, 1, 793, 10.1016/S0140-6736(69)92063-7

Palaniappan, 2005, Differential PsaA-, PspA-, PspC-, and PdB-specific immune responses in a mouse model of pneumococcal carriage, Infect Immun, 73, 1006, 10.1128/IAI.73.2.1006-1013.2005

Pettigrew, 2008, Microbial interactions during upper respiratory tract infections, Emerg Infect Dis, 14, 1584, 10.3201/eid1410.080119

Post, 2001, Direct evidence of bacterial biofilms in otitis media, Laryngoscope, 111, 2083, 10.1097/00005537-200112000-00001

Revai, 2008, Association of nasopharyngeal bacterial colonization during upper respiratory tract infection and the development of acute otitis media, Clin Infect Dis, 46, e34, 10.1086/525856

Ruohola, 2013, Bacterial and viral interactions within the nasopharynx contribute to the risk of acute otitis media, J Infect, 66, 247, 10.1016/j.jinf.2012.12.002

Schaar, 2011, Moraxella catarrhalis outer membrane vesicles carry beta-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin, Antimicrob Agents Chemother, 55, 3845, 10.1128/AAC.01772-10

Stroeher, 2003, Mutation of luxS of Streptococcus pneumoniae affects virulence in a mouse model, Infect Immun, 6, 3206, 10.1128/IAI.71.6.3206-3212.2003

Surette, 1999, Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production, P Natl Acad Sci USA, 96, 1639, 10.1073/pnas.96.4.1639

Swords, 2012, Nontypeable Haemophilus influenzae biofilms: role in chronic airway infection, Front Cell Infect Microbiol Rev, 2, 97

Unhanand, 1992, Pulmonary clearance of Moraxella catarrhalis in an animal model, J Infect Dis, 165, 644, 10.1093/infdis/165.4.644

Wallace, 1989, BRO beta-lactamases of Branhamella catarrhalis and Moraxella subgenus Moraxella, including evidence for chromosomal beta-lactamase transfer by conjugation in B. catarrhalis, M. nonliquefaciens, and M. lacunata, Antimicrob Agents Chemother, 33, 1845, 10.1128/AAC.33.11.1845

Weimer, 2010, Coinfection with Haemophilus influenzae promotes pneumococcal biofilm formation during experimental otitis media and impedes the progression of pneumococcal disease, J Infect Dis, 202, 1068, 10.1086/656046

Weimer, 2011, Divergent mechanisms for passive pneumococcal resistance to beta-lactam antibiotics in the presence of Haemophilus influenzae, J Infect Dis, 203, 549, 10.1093/infdis/jiq087

Whitby, 1998, Construction of antibiotic resistance cassettes with multiple paired restriction sites for insertional mutagenesis of Haemophilus influenzae, FEMS Microbiol Lett, 158, 57, 10.1111/j.1574-6968.1998.tb12800.x

Xavier, 2003, LuxS quorum sensing: more than just a numbers game, Curr Opin Microbiol, 6, 191, 10.1016/S1369-5274(03)00028-6

Yother, 1986, Transformation of encapsulated Streptococcus pneumoniae, J Bacteriol, 168, 1463, 10.1128/jb.168.3.1463-1465.1986