Cắt u có tương phản trong gliomas khuếch tán sát cạnh các vùng chức năng bằng điện sinh lý và huỳnh quang 5-ALA: đánh giá tỷ lệ cắt và kết quả thần kinh - một phân tích hệ thống và tổng hợp dữ liệu

Springer Science and Business Media LLC - Tập 46 - Trang 1-12 - 2023
David R. Peters1,2, Floriana Halimi2, Koray Ozduman3, Marc Levivier2,4, Alfredo Conti5,6, Nicolas Reyns7, Constantin Tuleasca2,4,8
1Department of Neurosurgery, Atrium Health, Charlotte, USA
2Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
3Department of Neurosurgery, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
4Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
5IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
6Dipartimento Di Scienze Biomediche E Neuromotorie (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
7Neurosurgery and Neurooncology Service, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
8Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Tóm tắt

Cả axit 5-aminolevulinic (5-ALA) và giám sát thần kinh trong phẫu thuật (IONM) đều đã được chứng minh là cải thiện kết quả trong điều trị gliomas độ cao (HGG). Sự tương tác và chồng chéo giữa hai kỹ thuật này ít được báo cáo trong tài liệu. Chúng tôi đã thực hiện một nghiên cứu tổng hợp và phân tích theo hệ thống tập trung vào việc sử dụng đồng thời 5-ALA và lập bản đồ trong phẫu thuật đối với HGG nằm trong các vùng chức năng. Sử dụng hướng dẫn PRISMA, chúng tôi đã xem xét các bài báo được công bố từ tháng 5 năm 2006 đến tháng 12 năm 2022 cho những bệnh nhân mắc HGG ở các vùng chức năng đã trải qua phẫu thuật vi phẫu với sự chỉ dẫn của 5-ALA và lập bản đồ trong phẫu thuật. Mức độ cắt bỏ là kết quả chính. Kết quả thứ nguyên là tình trạng suy giảm thần kinh mới xuất hiện vào ngày thứ 1 sau phẫu thuật và vẫn kéo dài vào ngày 90 sau phẫu thuật. Tỷ lệ cắt bỏ hoàn toàn khối u có khả năng tăng cường (CRET) là 73,3% (phạm vi: 61,9–84,8%, p < 0,001). Tỷ lệ cắt bỏ hoàn toàn bằng 5-ALA là 62,4% (phạm vi: 28,1–96,7%, p < 0,001). Phẫu thuật đã được ngừng lại do kết quả lập bản đồ trong 20,5% các trường hợp (phạm vi: 15,6–25,4%, p < 0,001). Tình trạng suy giảm thần kinh vào ngày thứ 1 sau phẫu thuật là 29,2% (phạm vi: 9,8–48,5%, p = 0,003). Tình trạng suy giảm thần kinh kéo dài vào ngày 90 sau phẫu thuật là 4,6% (phạm vi: 0,4–8,7%, p = 0,03). Cắt bỏ an toàn tối đa được hướng dẫn bởi IONM và 5-ALA cho gliomas độ cao ở các khu vực chức năng có thể đạt được với tỷ lệ cao trong nhiều trường hợp (73,3% CRET và 62,4% cắt bỏ hoàn toàn 5-ALA). Tình trạng suy giảm thần kinh kéo dài vào ngày 90 sau phẫu thuật là thấp, chỉ còn 4,6%. Cần duy trì sự cân bằng giữa 5-ALA và IONM để nâng cao chất lượng cuộc sống đồng thời tối đa hóa kiểm soát ung thư.

Từ khóa

#5-aminolevulinic acid #intraoperative neuromonitoring #high-grade gliomas #resection rates #neurological outcome

Tài liệu tham khảo

Brown TJ, Brennan MC, Li M, Church EW, Brandmeir NJ, Rakszawski KL, Patel AS, Rizk EB, Suki D, Sawaya R, Glantz M (2016) Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol 2:1460–1469. https://doi.org/10.1001/jamaoncol.2016.1373 McGirt MJ, Chaichana KL, Attenello FJ, Weingart JD, Than K, Burger PC, Olivi A, Brem H, Quinones-Hinojosa A (2008) Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas. Neurosurgery 63:700–707. https://doi.org/10.1227/01.NEU.0000325729.41085.73. (author reply 707-708) McGirt MJ, Chaichana KL, Gathinji M, Attenello FJ, Than K, Olivi A, Weingart JD, Brem H, Quinones-Hinojosa AR (2009) Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 110:156–162. https://doi.org/10.3171/2008.4.17536 Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198. https://doi.org/10.3171/jns.2001.95.2.0190 Albert FK, Forsting M, Sartor K, Adams HP, Kunze S (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34:45–60. https://doi.org/10.1097/00006123-199401000-00008. (discussion 60-41) Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62:753–764. https://doi.org/10.1227/01.neu.0000318159.21731.cf. (discussion 264-756) Li YM, Suki D, Hess K, Sawaya R (2016) The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg 124:977–988. https://doi.org/10.3171/2015.5.JNS142087 Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8. https://doi.org/10.3171/2011.2.jns10998 Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, Group AL-GS (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401. https://doi.org/10.1016/S1470-2045(06)70665-9 McGirt MJ, Mukherjee D, Chaichana KL, Than KD, Weingart JD, Quinones-Hinojosa A (2009) Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery 65:463–469. https://doi.org/10.1227/01.NEU.0000349763.42238.E9. (discussion 469-470) Rahman M, Abbatematteo J, De Leo EK, Kubilis PS, Vaziri S, Bova F, Sayour E, Mitchell D, Quinones-Hinojosa A (2017) The effects of new or worsened postoperative neurological deficits on survival of patients with glioblastoma. J Neurosurg 127:123–131. https://doi.org/10.3171/2016.7.JNS16396 Stummer W, van den Bent MJ, Westphal M (2011) Cytoreductive surgery of glioblastoma as the key to successful adjuvant therapies: new arguments in an old discussion. Acta Neurochir (Wien) 153:1211–1218. https://doi.org/10.1007/s00701-011-1001-x Dandy WE (1928) Removal of right cerebral hemisphere for certain tumors with hemiplegia. JAMA 90:823–825 Scherer HJ (1936) Comportement des différents gliomes vis-à-vis des cellules ganglionaires. Bull Assoc Fran Etude Cancer 25:470–493 Zhao S, Wu J, Wang C, Liu H, Dong X, Shi C, Shi C, Liu Y, Teng L, Han D, Chen X, Yang G, Wang L, Shen C, Li H (2013) Intraoperative fluorescence-guided resection of high-grade malignant gliomas using 5-aminolevulinic acid-induced porphyrins: a systematic review and meta-analysis of prospective studies. Plos One 8:e63682. https://doi.org/10.1371/journal.pone.0063682 Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hrobjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Rev Esp Cardiol (Engl Ed) 74:790–799. https://doi.org/10.1016/j.rec.2021.07.010 Goryaynov SA, Buklina SB, Khapov IV, Batalov AI, Potapov AA, Pronin IN, Belyaev AU, Aristov AA, Zhukov VU, Pavlova GV, Belykh E (2022) 5-ALA-guided tumor resection during awake speech mapping in gliomas located in eloquent speech areas: single-center experience. Front Oncol 12:940951. https://doi.org/10.3389/fonc.2022.940951 Della Puppa A, De Pellegrin S, d’Avella E, Gioffre G, Rossetto M, Gerardi A, Lombardi G, Manara R, Munari M, Saladini M, Scienza R (2013) 5-aminolevulinic acid (5-ALA) fluorescence guided surgery of high-grade gliomas in eloquent areas assisted by functional mapping. Our experience and review of the literature. Acta Neurochir (Wien) 155:965–972. https://doi.org/10.1007/s00701-013-1660-x. (discussion 972) Muscas G, Orlandini S, Bonaudo C, Dardo M, Esposito A, Campagnaro L, Carrai R, Fainardi E, Ciccarino P, Della Puppa A (2022) Functional outcomes, extent of resection, and bright/vague fluorescence interface in resection of glioblastomas involving the motor pathways assisted by 5-ALA. Acta Neurochir (Wien) 164:3267–3274. https://doi.org/10.1007/s00701-022-05358-9 Schucht P, Seidel K, Beck J, Murek M, Jilch A, Wiest R, Fung C, Raabe A (2014) Intraoperative monopolar mapping during 5-ALA-guided resections of glioblastomas adjacent to motor eloquent areas: evaluation of resection rates and neurological outcome. Neurosurg Focus 37:E16. https://doi.org/10.3171/2014.10.FOCUS14524 Feigl GC, Ritz R, Moraes M, Klein J, Ramina K, Gharabaghi A, Krischek B, Danz S, Bornemann A, Liebsch M, Tatagiba MS (2010) Resection of malignant brain tumors in eloquent cortical areas: a new multimodal approach combining 5-aminolevulinic acid and intraoperative monitoring. J Neurosurg 113:352–357. https://doi.org/10.3171/2009.10.JNS09447 Pastor J, Vega-Zelaya L, Pulido P, Garnes-Camarena O, Abreu A, Sola RG (2013) Role of intraoperative neurophysiological monitoring during fluorescence-guided resection surgery. Acta Neurochir (Wien) 155:2201–2213. https://doi.org/10.1007/s00701-013-1864-0 Senft C, Forster MT, Bink A, Mittelbronn M, Franz K, Seifert V, Szelenyi A (2012) Optimizing the extent of resection in eloquently located gliomas by combining intraoperative MRI guidance with intraoperative neurophysiological monitoring. J Neurooncol 109:81–90. https://doi.org/10.1007/s11060-012-0864-x Bello L, Castellano A, Fava E, Casaceli G, Riva M, Scotti G, Gaini SM, Falini A (2010) Intraoperative use of diffusion tensor imaging fiber tractography and subcortical mapping for resection of gliomas: technical considerations. Neurosurg Focus 28:E6. https://doi.org/10.3171/2009.12.FOCUS09240 Han SJ, Morshed RA, Troncon I, Jordan KM, Henry RG, Hervey-Jumper SL, Berger MS (2018) Subcortical stimulation mapping of descending motor pathways for perirolandic gliomas: assessment of morbidity and functional outcome in 702 cases. J Neurosurg 131:201–208. https://doi.org/10.3171/2018.3.JNS172494 Magill ST, Han SJ, Li J, Berger MS (2018) Resection of primary motor cortex tumors: feasibility and surgical outcomes. J Neurosurg 129:961–972. https://doi.org/10.3171/2017.5.JNS163045 Palmieri G, Cofano F, Salvati LF, Monticelli M, Zeppa P, Perna GD, Melcarne A, Altieri R, La Rocca G, Sabatino G, Barbagallo GM, Tartara F, Zenga F, Garbossa D (2021) Fluorescence-guided surgery for high-grade gliomas: state of the art and new perspectives. Technol Cancer Res Treat 20:15330338211021604. https://doi.org/10.1177/15330338211021605 Coburger J, Engelke J, Scheuerle A, Thal DR, Hlavac M, Wirtz CR, Konig R (2014) Tumor detection with 5-aminolevulinic acid fluorescence and Gd-DTPA-enhanced intraoperative MRI at the border of contrast-enhancing lesions: a prospective study based on histopathological assessment. Neurosurg Focus 36:E3. https://doi.org/10.3171/2013.11.FOCUS13463 Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013. https://doi.org/10.3171/jns.2000.93.6.1003 Stummer W, Reulen HJ, Novotny A, Stepp H, Tonn JC (2003) Fluorescence-guided resections of malignant gliomas–an overview. Acta Neurochir Suppl 88:9–12. https://doi.org/10.1007/978-3-7091-6090-9_3 Gandhi S, Tayebi Meybodi A, Belykh E, Cavallo C, Zhao X, Syed MP, Borba Moreira L, Lawton MT, Nakaji P, Preul MC (2019) Survival outcomes among patients with high-grade glioma treated with 5-aminolevulinic acid-guided surgery: a systematic review and meta-analysis. Front Oncol 9:620. https://doi.org/10.3389/fonc.2019.00620 Goryaynov SA, Okhlopkov VA, Golbin DA, Chernyshov KA, Svistov DV, Martynov BV, Kim AV, Byvaltsev VA, Pavlova GV, Batalov A, Konovalov NA, Zelenkov PV, Loschenov VB, Potapov AA (2019) Fluorescence diagnosis in neurooncology: retrospective analysis of 653 cases. Front Oncol 9:830. https://doi.org/10.3389/fonc.2019.00830 Widhalm G, Kiesel B, Woehrer A, Traub-Weidinger T, Preusser M, Marosi C, Prayer D, Hainfellner JA, Knosp E, Wolfsberger S (2013) 5-aminolevulinic acid induced fluorescence is a powerful intraoperative marker for precise histopathological grading of gliomas with non-significant contrast-enhancement. Plos One 8:e76988. https://doi.org/10.1371/journal.pone.0076988 Jaber M, Wolfer J, Ewelt C, Holling M, Hasselblatt M, Niederstadt T, Zoubi T, Weckesser M, Stummer W (2016) The value of 5-aminolevulinic acid in low-grade gliomas and high-grade gliomas lacking glioblastoma imaging features: an analysis based on fluorescence, magnetic resonance imaging, 18f-fluoroethyl tyrosine positron emission tomography, and tumor molecular factors. Neurosurgery 78:401–411. https://doi.org/10.1227/NEU.0000000000001020 Widhalm G, Wolfsberger S, Minchev G, Woehrer A, Krssak M, Czech T, Prayer D, Asenbaum S, Hainfellner JA, Knosp E (2010) 5-Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement. Cancer 116:1545–1552. https://doi.org/10.1002/cncr.24903 Capper D, Reifenberger G, French PJ, Schweizer L, Weller M, Touat M, Niclou SP, Euskirchen P, Haberler C, Hegi ME, Brandner S, Le Rhun E, Ruda R, Sanson M, Tabatabai G, Sahm F, Wen PY, Wesseling P, Preusser M, van den Bent MJ (2023) EANO guideline on rational molecular testing of gliomas, glioneuronal and neuronal tumors in adults for targeted therapy selection. Neuro Oncol. https://doi.org/10.1093/neuonc/noad008 Idoate MA, Diez Valle R, Echeveste J, Tejada S (2011) Pathological characterization of the glioblastoma border as shown during surgery using 5-aminolevulinic acid-induced fluorescence. Neuropathology 31:575–582. https://doi.org/10.1111/j.1440-1789.2011.01202.x Schucht P, Knittel S, Slotboom J, Seidel K, Murek M, Jilch A, Raabe A, Beck J (2014) 5-ALA complete resections go beyond MR contrast enhancement: shift corrected volumetric analysis of the extent of resection in surgery for glioblastoma. Acta Neurochir (Wien) 156:305–312. https://doi.org/10.1007/s00701-013-1906-7. (discussion 312) Diez Valle R, Tejada Solis S, Idoate Gastearena MA, Garcia de Eulate R, Dominguez Echavarri P, Aristu Mendiroz J (2011) Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience. J Neurooncol 102:105–113. https://doi.org/10.1007/s11060-010-0296-4 Stummer W, Tonn JC, Mehdorn HM, Nestler U, Franz K, Goetz C, Bink A, Pichlmeier U, Group AL-GS (2011) Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. Clin article. J Neurosurg 114:613–623. https://doi.org/10.3171/2010.3.JNS097 Chang EF, Clark A, Smith JS, Polley MY, Chang SM, Barbaro NM, Parsa AT, McDermott MW, Berger MS (2011) Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival Clinical Article. J Neurosurg 114:566–573. https://doi.org/10.3171/2010.6.JNS091246 Berger MS, Hadjipanayis CG (2007) Surgery of intrinsic cerebral tumors. Neurosurgery 61:279–304. https://doi.org/10.1227/01.NEU.0000255489.88321.18. (discussion 304-275) Berger MS, Rostomily RC (1997) Low grade gliomas: functional mapping resection strategies, extent of resection, and outcome. J Neurooncol 34:85–101. https://doi.org/10.1023/a:1005715405413 Kamada K, Todo T, Ota T, Ino K, Masutani Y, Aoki S, Takeuchi F, Kawai K, Saito N (2009) The motor-evoked potential threshold evaluated by tractography and electrical stimulation. J Neurosurg 111:785–795. https://doi.org/10.3171/2008.9.JNS08414 Kombos T, Suss O, Vajkoczy P (2009) Subcortical mapping and monitoring during insular tumor surgery. Neurosurg Focus 27:E5. https://doi.org/10.3171/2009.8.FOCUS09140 Mikuni N, Okada T, Nishida N, Taki J, Enatsu R, Ikeda A, Miki Y, Hanakawa T, Fukuyama H, Hashimoto N (2007) Comparison between motor evoked potential recording and fiber tracking for estimating pyramidal tracts near brain tumors. J Neurosurg 106:128–133. https://doi.org/10.3171/jns.2007.106.1.128 Nossek E, Korn A, Shahar T, Kanner AA, Yaffe H, Marcovici D, Ben-Harosh C, Ben Ami H, Weinstein M, Shapira-Lichter I, Constantini S, Hendler T, Ram Z (2011) Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation Clinical article. J Neurosurg 114:738–746. https://doi.org/10.3171/2010.8.JNS10639 Seidel K, Beck J, Stieglitz L, Schucht P, Raabe A (2013) The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. J Neurosurg 118:287–296. https://doi.org/10.3171/2012.10.JNS12895