Research status and development of magnesium matrix composites

Materials Science and Technology - Tập 36 Số 6 - Trang 645-653 - 2020
Guohong Ma1,2, Hao Xiao1,2, Jia Ye3, Yinshui He4
1School of Mechanical Engineering, Nanchang University, Key Laboratory of Lightweight and High Strength Structural Materials of Jiangxi Province, Nanchang, People's Republic of China
2School of Mechanical Engineering, Nanchang University, Nanchang, People's Republic of China
3Applied Materials, lnc., Santa Clara, CA, USA
4School of Environment and Chemical Engineering, Nanchang University, Nanchang, People's Republic of China

Tóm tắt

Magnesium and its alloys, as the metal materials with the lowest density among structural materials, have attracted much attention due to their excellent properties such as high specific stiffness, good electromagnetic shielding properties and good vibration damping effects. However, its low strength, inherent brittleness and poor corrosion resistance limit its application in various industries. By adding a reinforcing phase to the magnesium matrix, a magnesium-based composite material having excellent properties has become one of the effective ways to realise the industrial application of magnesium alloys. This article reviews the recent research progress of magnesium-based composites, including the reinforcing phases and preparation methods of magnesium-based composites, and looks forward to the future development and research directions of magnesium-based composites.

Từ khóa


Tài liệu tham khảo

10.1126/science.1182848

10.1038/s41598-017-10384-0

10.1038/s41467-019-08954-z

Sravya T, 2015, Metals, 5, 1

10.1007/s11837-008-0149-1

10.1016/j.scriptamat.2014.04.017

10.1038/srep17100

10.1038/nmat4435

10.1038/s41598-018-25527-0

10.1038/srep23184

10.1038/s41598-017-19124-w

10.1016/j.msea.2012.04.116

10.1023/B:JMSC.0000043583.47148.31

10.1016/j.msea.2015.06.079

10.1016/j.promfg.2018.02.014

10.1177/0021998316672295

10.1007/s00170-016-8676-3

10.1038/nature16445

10.1016/S1003-6326(19)65093-4

10.1016/j.jclepro.2019.06.018

10.3390/ma12203445

10.1016/j.scriptamat.2013.11.014

10.1016/j.mser.2003.10.001

10.1016/j.mser.2013.08.001

10.1016/j.micron.2014.10.005

10.1016/j.compscitech.2010.05.004

10.1016/j.carbon.2010.09.054

10.1016/j.compositesa.2006.04.006

10.1016/j.jmrt.2019.07.037

10.3390/ma12193242

10.1016/j.diamond.2016.08.017

10.3390/ma12172823

10.1038/nmat3064

10.1016/j.msec.2019.04.051

10.1007/s11665-018-3391-x

10.1016/j.matdes.2015.10.101

10.1007/s11837-019-03736-w

10.1016/j.msea.2012.01.112

10.1016/j.msea.2015.01.039

10.1016/j.carbon.2015.10.018

10.1016/j.carbon.2017.10.090

10.1016/j.jma.2016.11.003

Yang Z, 2019, Mater Res Express, 6, 1

10.1016/j.msea.2014.06.077

10.1007/s40195-014-0156-x

Pravir K, 2018, Mater Sci Eng, 346, 1

10.1016/j.msea.2005.02.025

10.1080/02670836.2018.1558722

Yao YT, 2019, Acta Metall Sin, 55, 141

Shi Q, 2019, T Mater Heat Treat, 40, 32

10.1016/j.msea.2015.02.002

10.1021/nn9010472

10.4028/www.scientific.net/KEM.261-263.1487

German R., 2014, Sintering: from empirical observations to scientific principles

10.1016/j.ceramint.2018.03.093

10.1016/j.jallcom.2016.01.118

10.1016/j.msea.2014.12.096

10.1016/j.jallcom.2016.07.063

10.1016/j.jallcom.2016.12.146

10.1016/j.matchemphys.2018.03.058

10.1016/j.jallcom.2016.08.145

10.1016/j.jallcom.2010.01.046

10.1016/j.matchemphys.2019.01.007

Su LZ, 2019, Rare Metal Mat Eng, 48, 739

10.1016/j.compositesa.2017.05.011

10.1016/j.matchar.2015.04.015

Krisztian N, 2019, Sci Rep, 9, 1, 10.1038/s41598-018-37186-2

10.1016/j.jallcom.2019.151682