Research progress on thermal effect of LD pumped solid state laser

Optics & Laser Technology - Tập 157 - Trang 108640 - 2023
Peijin Shang1, Lu Bai1, Shiyu Wang1, Defang Cai1, Bingbin Li1
1School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, Shaanxi 710071, China

Tài liệu tham khảo

Xiong, 2021, Airborne actively Q-switched quasi-continuous-wave all-solid-state laser, 117631M Zhu, 2018, 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser, Opt. Laser Technol., 100, 75, 10.1016/j.optlastec.2017.09.048 Smrž, 2017, Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE, Appl. Sci., 7, 1016, 10.3390/app7101016 Xu, 2016, Diode-pumped Q-switched Nd:YLF laser at 1313 nm, Opt. Rev., 23, 382, 10.1007/s10043-016-0205-y Ma, 2016, Continuous-wave and passively Q-switched tape casting YAG/Nd:YAG/YAG ceramic laser, Opt. Mater. Exp., 6, 2966, 10.1364/OME.6.002966 Nasim, 2014, Diode lasers: from laboratory to industry, Opt. Laser Technol., 56, 211, 10.1016/j.optlastec.2013.08.012 Wang, 2004, Experimental study of a high power and high efficiency CW diode-side-pumped Nd:YAG laser, Opt. Laser Technol., 36, 69, 10.1016/S0030-3992(03)00135-X Zhang, 2013, Analysis of thermal effect and beam wavefront properties for LD-pumped Q-switch Nd:YAG laser, Opt. Laser Technol., 49, 268, 10.1016/j.optlastec.2013.01.020 Lu, 2011, Multi-wavelength operation of LD side-pumped Nd:YAG laser, Opt. Commun., 284, 1941, 10.1016/j.optcom.2010.10.094 Li, 2012, Thermal effect of LD end-pumped Nd:YAG crystal with variable thermal conductivity, Laser Technol., 36, 612 Li, 2015, Thermal effect of Nd:YAG rod crystal end pumped by pulse LD, Appl. Laser, 35, 6 He, 2011, Generation of radially polarized beams based on thermal analysis of a working cavity, Opt. Exp., 19, 18302, 10.1364/OE.19.018302 Niu, 2011, Theoretical investigation on thermal lensing effects of Yb:KY(WO4)2 in diode-pumped lasers, Optik, 122, 1931, 10.1016/j.ijleo.2010.12.007 Zhang, 2011, Four-wave mixing dipole soliton in laser-induced atomic gratings, Phys. Rev. Lett., 106, 093904, 10.1103/PhysRevLett.106.093904 W. Koechner, Solid-State Laser Engineering, sixth ed., 2006. <https://doi.org/10.1007/978-3-662-14219-6>. Ryabtsev, 2020, Thermo-optic properties of diode-pumped Nd:YAG lasers with ceramic and crystalline active elements, J. Opt. Technol., 87, 105, 10.1364/JOT.87.000105 Chénais, 2006, On thermal effects in solid-state lasers: the case of ytterbium-doped materials, Prog. Quant. Electron., 30, 89, 10.1016/j.pquantelec.2006.12.001 Ross, 2019, Polishing characteristics of Nd:YAG ceramics with various Nd-dopant concentrations, CIRP J. Manuf. Sci. Tec., 27, 93, 10.1016/j.cirpj.2019.05.003 Ma, 2017, Direct thermal diffusion bonding of Nd:YAG/YAG composite transparent ceramics by vacuum sintering, J. Eur. Ceram. Soc., 37, 3631, 10.1016/j.jeurceramsoc.2017.04.010 Lv, 2002 Lu, 1996, A novel approach for compensation of birefringence in cylindrical Nd:YAG rods, Opt. Quant. Electron., 28, 57, 10.1007/BF00578551 Kugler, 1997, Investigation of the misalignment sensitivity of a birefringence-compensated two-rod Nd:YAG laser system, Appl. Opt., 36, 9359, 10.1364/AO.36.009359 H. Yoshida, N. Takeuchi, H. Okada, H. Fujita, M. Nakatsuka, Thermal lens compensation of Nd:YAG rod laser using a solid-state element with negative dn/dT, in: Conference on Lasers and Electro-Optics – Pacific Rim (2007) 1–2. <https://doi.org/10.1109/CLEOPR.2007.4391696>. Shi, 2007, Semianalytical thermal analysis of thermal focal length on Nd:YAG rods, Appl. Opt., 46, 6655, 10.1364/AO.46.006655 Gao, 2019, Instability transverse mode phase transition of fiber oscillator for extreme power lasers, Opt. Exp., 27, 22393, 10.1364/OE.27.022393 He, 1998, Continuous-wave output of 5.5 W at 532 nm by intracavity frequency doubling of an Nd:YVO4 laser, Chin. Phys. Lett., 15, 418, 10.1088/0256-307X/15/6/011 Bai, 2002, Continuous-wave diode-laser end-pumped Nd:YVO4/KTP high-power solid-state green laser, Opt. Laser Technol., 34, 333, 10.1016/S0030-3992(02)00024-5 Fan, 2018, Study on temperature characteristics of Nd: YAG laser crystal rod with dual end-pump, Laser J., 39, 18 Fan, 2018, Experimental study on high efficiency double frequency laser with LD dual pump Nd:YAG, Chin. J. Lumin., 39, 830, 10.3788/fgxb20183906.0830 Kracht, 2005, Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping, Opt. Exp., 13, 6212, 10.1364/OPEX.13.006212 Peng, 2002, Power scaling of diode-pumped Nd:YVO4 lasers, IEEE J. Quant. Elects., 38, 1291, 10.1109/JQE.2002.802443 Xie, 2000, Influence of the thermal effect on the TEM00 mode output power of a laser-diode side-pumped solid-state laser, Appl. Opt., 39, 5482, 10.1364/AO.39.005482 Li, 2021, Transient thermal effect of Nd:YAG ceramics with pulsed laser diode bar side-pumped, Infrared Laser Eng., 50, 148 Dai, 2007, Analysis of thermal effects in laser rod pumped by repetitively pulsed laser diode array, Semicond. Photon. Technol., 13, 283 Yang, 2003, Study on thermal effect of laser diode bar side-pumped Nd:YAG lasers, J. Appl. Opt., 24, 23 Y.X. Guo, M.L. Gong, H.Z. Xue, C Li., P. Yan, Q. Liu, G. Chen, Absorption property of laser rod cirde-side-pumped by LD, Laser Technol. 30 (2006) 570–573, 577 (in Chinese). <https://doi.org/10.3969/j.issn.1001-3806.2006.06.008>. Yu, 2009, Study for pumping uniformity in double-arched LDA side-pumped Nd:YAG laser, Laser Infrared, 39, 847 Wang, 2007, Pumping intensity distribution in LDA side pumped solid state lasers LD, Acta Phys. Sin., 36, 961 Luo, 2002, Study on ring-LD side-pumping solid laser, High Power Laser Particl. Beams, 14, 331 J.M. Li, Development, trend and application of high average power diode pumped lasers, Laser Optoelectron. P. 45 (2008) 16–29. Liu, 2007, Edge-pumped asymmetric Yb:YAG/YAG thin disk laser, Laser Phys. Lett., 4, 719, 10.1002/lapl.200710055 Tsunekane, 2005, High-power, diode edge-pumped, single-crystal Yb:YAG/ceramic YAG composite microchip Yb:YAG laser for material processing, Conf. Lasers Electro-Opt., 2, 1088 Y. Nishikawa, Slab-shaped 10kW all-solid-state laser, Rev. Laser Eng. 31 (2003) 513–518. <https://doi.org/10.2184/lsj.31.513>. D. Lin, W.A. Clarkson, Reduced thermal lensing in an end-pumped Nd:YVO4 laser using a ring-shaped pump beam, in Conference on Lasers and Electro-Optics, OSA Technical Digest, 2016 (Optica Publishing Group, 2016). <https://doi.org/10.1364/CLEO_SI.2016.SM3M.5>. Oh, 2020, Direct generation of the first-radial-order Laguerre-Gaussian mode in a Nd:YVO4 laser incorporating a core-ring-shaped pump fibre, Laser Phys., 30, 095801, 10.1088/1555-6611/ab9ec6 Lin, 2017, End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam, Opt. Lett., 42, 2910, 10.1364/OL.42.002910 Dietrich, 2015, Investigations on ring-shaped pumping distributions for the generation of beams with radial polarization in an Yb:YAG thin-disk laser, Opt. Exp., 23, 26651, 10.1364/OE.23.026651 Dey, 2021, Study of a dark core beam generated by nonlinear thermo-optical effect, Opt. Laser Technol., 134, 106652, 10.1016/j.optlastec.2020.106652 Kim, 2017, Influence of a ring-shaped pump beam on temperature distribution and thermal lensing in end-pumped solid state lasers, Opt. Exp., 25, 14668, 10.1364/OE.25.014668 Contag, 1999, Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser, Quant. Electron., 29, 697, 10.1070/QE1999v029n08ABEH001555 Cousins, 1992, Temperature and thermal stress scaling in finite-length end-pumped laser rods, IEEE J. Quant. Elect., 28, 1057, 10.1109/3.135228 Liu, 2010, Analysis on thermal effect of laser-diode array end-pumped composite rod laser by finite element method, Acta Phys. Sin-Ch. Ed., 59, 8535, 10.7498/aps.59.8535 Liu, 2019, Finite element method analysis of thermal effect in gradient dopant concentration medium laser end-pumped by laser diode, Infrar. Laser Eng., 48, 1105004, 10.3788/IRLA201948.1105004 Kracht, 2005, 407 W end-pumped multi-segmented Nd:YAG laser, Opt. Exp., 13, 10140, 10.1364/OPEX.13.010140 Wang, 2009, Theoretical analysis of temperature and stress distribution in end-pumped composite ceramic Nd:YAG laser slab, Chin. J. Lasers, 36, 1777, 10.3788/CJL20093607.1777 Wei, 2021, Superior performance of a 2 kHz pulse Nd:YAG laser based on a gradient-doped crystal, Photon. Res., 9, 1191, 10.1364/PRJ.424989 Jinge, 2021, Study on LD end-pumped multi-segment bonded Tm:YAG solid-state laser, Opt. Commun., 480, 126452, 10.1016/j.optcom.2020.126452 Xiong, 2003, Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers, IEEE J. Quant. Elect., 39, 979, 10.1109/JQE.2003.814371 M.J. Yarrow, J.W. Kim, W.A. Clarkson, High power single-frequency continuous-wave and pulsed Nd:YVO4 master oscillator power amplifier, in Advanced Solid-State Photonics, Technical Digest (Optica Publishing Group, 2006). <https://doi.org/10.1364/ASSP.2006.MC6>. Fang, 2017, Thermal analysis and laser performance of a GYSGG/Cr, Er, Pr:GYSGG composite laser crystal operated at 2.79 μm, Opt. Exp., 25, 21349, 10.1364/OE.25.021349 Cai, 2003, Thermal effect and heat dissipation technology of laser medium crystal in DPL, Natl. Symp. Optoelectron. Technol., 2000, 352 Quan, 2021, Performance of a 968-nm laser-diode side-pumped, electro-optical Q-switched Er, Pr:YAP laser with emission at 2.7μm, Opt. Eng., 60, 066112, 10.1117/1.OE.60.6.066112 Zhao, 2007, Theoretical optimum extremity radius ground of laser rod to compensate thermal effects, Photon. Sin., 36, 84 Wang, 2015, Compensation of strong thermal lensing in an LD side-pumped high-power Er:YSGG laser, Laser Phys. Lett., 12, 105004, 10.1088/1612-2011/12/10/105004 L.Z. Hu, D.L. Sun, Y.L. Wang, J.Q. Luo, H.L. Zhang, Z.Q. Fang, X.Y. Zhao, C. Quan, Z.Y. Han, Laser performance of high repetition frequency on a 970nm LD side-pumped Er:YSGG crystal operated at 2.79μm, Infrar. Phys. Technol. 105 (2020) 103224. <https://doi.org/10.1016/j.infrared.2020.103224>. Liu, 2012, Thermal lens focal length measurement of grinding extremity Nd:YAG laser rod, J. Shenyang Norm. Univ. (Nat. Sci. Ed.), 30, 45 Hajiesmaeilbaigi, 2005, Experimental study of a high-power CW diode-side-pumped Nd:YAG rod laser, Laser Phys. Lett., 2, 437, 10.1002/lapl.200510027 Guan, 2003, Design of thermal effect compensation resonator for a sort of high-power end-pumped Nd:YVO4 laser, Acta Photon. Sin., 32, 1418 Li, 2018, Research on thermal lensing effect investigation of LD end pumped Tm:LuAG Laser, J. Changchun Univ. Sci. Technol., 41, 6 Kogelnik, 1966, Laser beams and resonators, Proc. IEEE, 54, 1312, 10.1109/PROC.1966.5119 Lu, 1999 Hodgson, 1989, Optical resonators for high power lasers, Proceedings of SPIE, 19 Kogelnik, 1965, On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation, Appl. Opt., 4, 1562, 10.1364/AO.4.001562 Li, 2020, Research on high power 1.3μm diode pumped Nd:YAG laser, Laser Infrared., 50, 821 Zhao, 2003, Gain distribution characteristics in working medium side-pumped by diode bars, Acta Opt. Sin., 23, 57 Shen, 2017, Four-dimensional thermal analysis of 888 nm pumped Nd:YVO4 dual-rod acousto-optic Q-switched laser, Appl. Sci., 7, 470, 10.3390/app7050470 Honea, 2000, High-power dual-rod Yb:YAG laser, Opt. Lett., 25, 805, 10.1364/OL.25.000805 Chen, 2000, Efficient high-power diode-end-pumped TEM00 Nd:YVO4 laser with a planar cavity, Opt. Lett., 25, 1016, 10.1364/OL.25.001016 Cerullo, 1993, Output power limitations in CW single transverse mode Nd: YAG lasers with a rod of large cross-section, Opt. Quant. Electron., 25, 489, 10.1007/BF00308304 Magni, 1991, Recent developments in laser resonator design, Opt. Quant. Electron., 23, 1105, 10.1007/BF00619980 Magni, 1986, Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability, Appl Opt., 25, 107, 10.1364/AO.25.000107 Sudheer, 2007, Characterization of a diode double-end pumped Nd:YVO4 laser for high-bit-rate free-space and intersatellite communications, Opt. Eng., 46, 104201, 10.1117/1.2790027 Wang, 2017, Study on thermal effect and compensation technology of 0.53μm all-solid-state laser, Infrared Laser Eng., 46, 406003, 10.3788/IRLA201746.0406003 Cui, 2019, 100–300Hz repetition-rate acousto-optic Q-switched 2.79μm Er:YSGG laser side-pumped by laser-diode, Infrared Phys. Techn., 98, 256, 10.1016/j.infrared.2019.03.029 Alekseev, 2014, A cavity for enhancing the brightness of lasers with an induced thermal lens in the active element, J. Opt. Technol., 81, 540, 10.1364/JOT.81.000540 Cui, 2006, Study on LD-pumped Nd:YAG laser cutter for silicon wafer, Opt. Precis. Eng., 14, 829 Ma, 2008, Improved performance of acoustooptically Q-switched Nd:GdVO4 laser by using the planoconvex cavity, Laser Phys., 18, 1505, 10.1134/S1054660X08120177 Ji, 2006, Comparison of laser performance of electro-optic Q-switched Nd:YAG ceramic/single crystal laser, Chin. Opt. Lett., 4, 219 R. Koch, Self-adaptive optical elements for compensation of thermal lensing effects, CLEO '97., Summaries of Papers Presented at the Conference on Lasers and Electro-Optics 140 (1997) 284–284. <https://doi.org/10.1109/CLEO.1997.603147>. Graf, 2003, Compensation of thermal lenses in high-power solid-state lasers, 18 Ho, 1998, Micro-electro-mechanical-systems (mems) and fluid flows, Annu. Rev. Fluid Mech., 30, 579, 10.1146/annurev.fluid.30.1.579 Zhu, 1999, Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation, Appl. Opt., 38, 168, 10.1364/AO.38.000168 Chetkin, 1993, Deformable mirror correction of a thermal lens induced in the active rod of a solid state laser, Opt. Commun., 100, 159, 10.1016/0030-4018(93)90573-N Zhong, 2008, The compensation of wave front aberrations in laser resonators through MEMS-DMs, J. Changsha Univ. Sci. Technol., 5, 63 Shiau, 2011, MEMS gyroscope null drift and compensation based on neural network, Adv. Mater. Res., 255–260, 2077, 10.4028/www.scientific.net/AMR.255-260.2077 Salvia, 2010, Real-time temperature compensation of mems oscillators using an integrated micro-oven and a phase-locked loop, J. Microelectromech. Syst., 19, 192, 10.1109/JMEMS.2009.2035932 M. Lutz, A. Partridge, Temperature compensation for silicon MEMS resonator, 2006. <https://www.freepatentsonline.com/y2006/0186971.html>. Ren, 2007, Compensation of the thermal aberrations in laser resonators through MEMS-DMs, Opt. Optoelectr. Technol., 5, 8 Ayazi, 2012, Compensation, tuning, and trimming of MEMS resonators, 1 Zhang, 2016, A deformable plane-parallel optical plate with 16 actuated points for low order aberrations correction, 968605 Zhao, 2018, Active lens for thermal aberration compensation in lithography lens, Appl. Opt., 57, 8654, 10.1364/AO.57.008654 Chen, 2016, Active compensation of wavefront aberrations by controllable heating of lens with electric film heater matrix, Appl. Opt., 55, 6634, 10.1364/AO.55.006634 Nam, 2016, Structure modulated electrostatic deformable mirror for focus and geometry control, Opt. Exp., 24, 55, 10.1364/OE.24.000055 Lima, 2017, Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses, Opt. Exp., 25, 6700, 10.1364/OE.25.006700 Wu, 2015, Optimal design of high power Nd:YAG laser based on compensation of thermal lens effect, Laser Technol., 39, 377 Tong, 2005, Research of thermal effects compensation of high power diode laser module, High Power Laser Particle Beams, 17, 125 Pushkin, 2020, Megawatt-level repetitively pulsed erbium 3 µm laser with strong thermal lens compensation, Jetp. Lett., 112, 478, 10.1134/S0021364020200023 Kawasaki, 2019, 100 Hz operation in 10 PW/sr·cm2 class Nd:YAG Micro-MOPA, Opt. Express, 27, 19555, 10.1364/OE.27.019555 T. Graf, E. Wyss, H.P. Weber, Self-adaptive compensation for the thermal lens in high-power lasers, in Advanced Solid State Lasers 50 (2001) PD6. <https://doi.org/10.1364/ASSL.2001.PD6>. Weber, 2000, Self-adjusting compensating thermal lens to balance the thermally induced lens in solid-state lasers, IEEE J. Quant. Electron., 36, 757, 10.1109/3.845734 Yoshida, 2007, Thermal-lens-effect compensation of Nd:YAG rod laser using a solid element of negative temperature coefficient of refractive index, Jpn. J. Appl. Phys., 46, 1012, 10.1143/JJAP.46.1012 Liu, 2020, Study on passive compensation of temperature induced thermal lenses, Optoelectron. Lett., 16, 161, 10.1007/s11801-020-9089-y Yin, 2016, High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal, Opt. Lett., 41, 2033, 10.1364/OL.41.002033 Huang, 2020, 11 W YLF-based intra-cavity pumped Ho laser with near diffraction limited beam quality, Opt. Lett., 45, 5307, 10.1364/OL.405862 Berrou, 2018, Comparative study of high power Tm:YLF and Tm:LLF slab lasers in continuous wave regime, Opt. Exp., 26, 10559, 10.1364/OE.26.010559 L. Basyrova, P. Loiko, J.-L. Doualan, A. Benayad, A. Braud, B. Viana, P. Camy, Thermal lensing, heat loading and power scaling of mid-infrared Er:CaF2 lasers, Opt. Express 30 (2022) 8092–8103. <https://doi.org/10.1364/OE.449129>. Zhang, 2005, 40Ar / 39Ar geochronology of the Faku tectonites: implications for the tectonothermal evolution of the Faku block, northern Liaoning, Sci. China Ser. D-Earth Sci., 48, 601, 10.1360/03yd0208 Shen, 1981, Thermal effects in orthorhombic YAP crystals, Acta Phys. Sin., 30, 1075, 10.7498/aps.30.1075 J.E. Schoenly, D.H. Reitze, V. Ramanathan, J. Lee, Methods for compensating thermal mode distortions in high average power chirped pulse amplifiers, 2014. <https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.576.2354>. Graf, 2001, Laser resonator with balanced thermal lenses, Opt. Commun., 190, 327, 10.1016/S0030-4018(01)01111-7 Zhao, 2019, Improvement of 2.79-μm laser performance on laser diode side-pumped GYSGG/Er, Pr:GYSGG bonding rod with concave end-faces, Chinese Phys. B, 28, 114208, 10.1088/1674-1056/ab4ce0 Hu, 2021, Laser performance of LD side-pumped high-efficiency YSGG/Er:YSGG/YSGG bonding crystal rod with concave end-faces, Infrared Phys. Techn., 119, 103944, 10.1016/j.infrared.2021.103944 Fan, 2018, Simulation and analysis of the thermal aberration dynamic compensation based on the cascaded multi-crystal system (CMCS), Opt. Commun., 426, 375, 10.1016/j.optcom.2018.05.073 Shang, 2022, Thermal lens Q-switched 1064nm Nd:YAG laser, Opt. Commun., 507, 127676, 10.1016/j.optcom.2021.127676