Tiến bộ nghiên cứu về cơ chế và công nghệ cải thiện khả năng thấm của phương pháp nổ tích lũy bằng cách khoan sâu trong than

Donggang Guo1, Pengfei Lv2, Jiechao Zhao1, Chao Zhang1
1School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
2Safety Engineering College, Beijing Institute of Petrochemical Technology, Beijing, 102617, China

Tóm tắt

Tóm tắtViệc khai thác khí mê-tan trong than là một phương thức quan trọng để khai thác và sử dụng tài nguyên khí, cũng như một phương thức để phòng ngừa các thảm họa trong mỏ than. Để giải quyết vấn đề tỷ lệ khai thác khí thấp từ các mỏ than có hàm lượng khí cao và độ thấm thấp, một phương pháp cải thiện độ thấm thông qua nổ tích lũy với khoan sâu được áp dụng để phát triển các vết nứt hướng ban đầu bằng dòng jet. Dưới tác động của sóng căng thẳng nổ và đệm khí phát nổ, các vết nứt lan rộng trên một phạm vi lớn bên trong than, từ đó cải thiện độ thấm của vỉa than. Nghiên cứu này tập trung vào các tiêu chí về vỡ nứt vỉa than do nổ tích lũy dựa trên tổng quan tài liệu về hiệu ứng thâm nhập của nổ tích lũy. Trên cơ sở đó, chúng tôi tóm tắt khu vực vỡ nứt than, quá trình mở rộng vết nứt, và các công nghệ then chốt trong việc nạp thuốc và bịt lỗ cho phương pháp nổ tích lũy. Ngoài ra, tiến bộ nghiên cứu mới nhất trong việc tối ưu hóa các thông số khoan và nổ kiểm tra tại hiện trường cho nổ tích lũy cũng được giới thiệu. Các phát hiện nghiên cứu chỉ ra rằng cơ chế cải thiện độ thấm của nổ tích lũy có thể được tăng cường hơn nữa, và công nghệ cùng thiết bị kỹ thuật cần phải được cải thiện khẩn cấp. Cuối cùng, các xu hướng phát triển trong kỹ thuật cải thiện độ thấm bằng phương pháp nổ tích lũy được xác định.

Từ khóa


Tài liệu tham khảo

Abrahamson GR, Goodier JN (1963) Penetration by shaped charge jets of nonuniform velocity. J Appl Phys 34(1):195–199

Birkhoff G, MacDougall DP, Pugh EM (1948) Explosives with Lined Cavities. J Appl Phys 19(6):563–582

Bjarnholt G, Holmberg R, Ouchterlong F (1983) A linear shaped charge system for contour blasting. In: Proceeding of 9th Conference on Explosives and Blasting Technique, Dallas. Society of Explosives Engineers.

Cai F, Liu ZG, Zhang CJ, Lin BQ (2007) Numerical simulation of improving permeability by deep-hole presplitting explosion in loose-soft and low permeability coal sea. J China Coal Soc 32(5):499–503

Dai J (2001) Calculation of radii of the broken and cracked areas in rock by a long charge explosion. J Liaoning Tech Univ (Nat Sci) 20(2):144–147

Gao K, Liu ZG, Liu J, Zhu FH, Qiao GD, Zhang SC (2019) Application research of directional cumulative blasting for weakening reverse faults in fully mechanized excavation face. Chin J Rock Mech Eng 38(7):1408–1419

Gong HS (1986) Fracture mechanics model of radial shaped charge cutting rock blasting. Explos Mater 1:1–3

Gong M, Liu WB, Wang DS, Wu HM, Chen TM, Qiu DC (2006) Controlled blasting technique to improve gas pre-drainage effect in a coal mine. J Univ Sci Technol Beijing 28(3):223–226

Guo DY, Pei HB, Song JC, Qin FQ, Liu XB (2008) Study on splitting mechanism of coal bed deep-hole cumulative blasting to improve permeability. J China Coal Soc 33(12):1381–1385

Guo DY, Song WJ, Li ZZ, Qin FQ, Liu XB (2009) Research on splitting technical of coal bed deep-hole cumulative blasting to improve permeability. J China Coal Soc 34(8):1086–1089

Guo DY, Yang X, Shan ZY, Lv PF (2011) Sealing technology of coal bed deep-hole cumulative blasting. J Univ Sci Technol Beijing 33(7):785–789

Guo DY, Lv PF, Pei HB, Shan ZY (2012) Numerical simulation on crack propagation of coal bed deep-hole cumulative blasting. J China Coal Soc 37(2):274–278

Guo DY, Shang DY, Lv PF, Wang SY, Wang JM (2013a) Experimental research of deep-hole cumulative blasting in hard roof weakening. J China Coal Soc 38(7):1149–1153

Guo DY, Lv PF, Shan ZY, Xie A (2013b) Drilling parameters of deep-hole cumulative blasting to improve coal seam permeability in gas drainage. J Univ Sci Technol Beijing 35(1):16–20

Guo DY, Lv PF, Wang YG, Yang R (2013c) Blasting parameter study of deep-hole cumulative blasting to improve coal seam permeability. J Univ Sci Technol Beijing 35(12):1533–1537

Guo DY, Zhang HJ, Lv PF, Zhang GW (2014) Effect of fault on deep-hole cumulative blasting to improve coal bed permeability. J Univ Sci Technol Beijing 34(10):1281–1286

Guo DY, Zhao JC, Lv PF, Zhai M (2016) Dynamic effects of deep-hole cumulative blasting in coal seam and its application. Chin J Eng 38(12):1681–1687

Guo DY, Zhao JC, Zhang C, Zhu TG (2018a) Mechanism of control hole on coal crack initiation and propagation under deep-hole cumulative blasting in coal seam. Chin J Rock Mech Eng 37(4):919–930

Guo DY, Zhang C, Zhu TG, Pan JJ (2018b) Effect of charge structure on deep-hole cumulative blasting to improve coal seam permeability. Chin J Eng 40(12):1488–1494

Guo DY, Zhao JC, Lv PF, Zhu TG (2019) Effective fracture zone under deep-hole cumulative blasting in coal seam. Chin J Eng 41(5):582–590

He MC, Cao WF, Shan RL, Wang SL (2003) New blasting technology-bilateral cumulative tensile explosion. Chin J Rock Mech Eng 22(12):2047–2051

Jacek B, Zenon W, Piotr K, Leszek S, Bogdan Z (2018) Application of sintered liners for explosively formed projectile charges. Int J Impact Eng 118:91–97

Li CR, Kang LJ, Qi QX, Mao DB, Xu G (2009) Numerical simulation of deep-hole blasting and its application in mine roof weaken. J China Coal Soc 34(12):1632–1636

Liu J, Liu ZG, Gao K, Ma YK, Li ZQ, Guo LJ (2014) Experimental study and application of directional focused energy blasting in deep boreholes. Chin J Rock Mech Eng 33(12):2490–2496

Liu JC, Wang HT, Yuan ZG, Fan XG (2011) Experimental study of pre-splitting blasting enhancing pre-drainage rate of low permeability heading face. Proc Eng 26:818–823

Luo Y, Shen ZW (2006) Study on orientation fracture blasting with shaped charge in rock. Journal of University of Science and Technology Beijing 13(3):193–198

Lv PF, Dou XX, Zhu TG, Wang JM (2013) Application on permeability improved technology with deep borehole energy accumulation blasting in coal seam. Coal Sci Technol 41(12):35–38

Mohaupt H (1966) Shaped charges and warheads. Inc. Englewood Cliffs, New Jersey, pp 66–78.

Mu CM, Wang HL, Huang WY, Kuang CJ (2013) Increasing permeability mechanism using directional cumulative blasting in coal seams with high concentration of gas and low permeability. Rock Soil Mech 34(9):2496–2500

National Energy Administration (2016) The 13th Five-Year plan for coal industry development.

Niu Q (1990) Mechanism of rock blasting. Northeast Institute of Technology Press, Shenyang

Pugh EM, Eichelberger RJ, Rostoker N (1952) Theory of Jet Formation by Charges with Lined Conical Cavities. J Appl Phys 23(5):537–542

Salih S, Oguzhan A, Mehmet SY (2013) Experimental investigations on aluminum shaped charge liners. Proc Eng 58:479–486

Seokbin L (2012) Steady state equation of motion of a linear shaped charges liner. Int J Impact Eng 44:10–16

Shang DY (2014) Research on cumulative blasting technology for improving coal seam permeability and roof weakening. Dissertation, China University of Mining & Technology, Beijing

Shen ZW (1985) Destructive effect of double-sided shaped charge jet on medium. Explos Mater 2:1–4

Song YQ, Li XS, Guo DY, Shi BK (2019) Study on the decoupled charge effect in deep-hole cumulative blasting of coal seam. Adv Civil Eng. https://doi.org/10.1155/2019/8486198

Yang RS, Zhang ZR, Yang LY, Guo YX (2013) Cumulative blasting experiment study of slotted cartridge based on hard-rock rapid driving technology. Chin J Rock Mechan Eng 32(2):317–323

Yao SW (2006) Improving method and increasing effect of gas drainage. Journal of China Coal Society 31(6):721–726

Zeng XW, Xue HL (1988) A theoretical study on linear shaped charge. Explos Shock Waves 8(2):97–105

Zhang CH, Liu ZG, Wang BS, Li LC, Zhu XH (2009) Numerical simulation and test study on mechanical properties evolution of high-pressure water injection coal seam. Chin J Rock Mech Eng 28(Supp. 2):3371–3375

Zheng PT, Yang T, Qin ZZ (2006) Theoretical modeling and analysis of the formation process of shaped charge jet. J Nat Univ Def Technol 28(3):28–32

Zhu FH, Liu ZG, Gao K, Liu J (2018) Experimental study on rock damage of roadway excavation by cumulative blasting in structural coal. Chin J Rock Mech Eng 37(9):2037–2047

Zhu XG, Luo HY, Zeng DG (2000) Analysis of coal blasting containing gas. West-China Explor Eng 66(5):97–98