Research progress on iron oxide-based magnetic materials: Synthesis techniques and photocatalytic applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Feng, 2014, High performance, recoverable Fe3O4–ZnO nanoparticles for enhanced photocatalytic degradation of phenol, Chem. Eng. J., 244, 327, 10.1016/j.cej.2014.01.075
Zhang, 2010, Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation, Appl. Catal., B, 95, 423, 10.1016/j.apcatb.2010.01.022
Ghicov, 2009, Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures, Chem. Commun., 2791, 10.1039/b822726h
Bandara, 2007, Raschig rings–Fe2O3 composite photocatalyst activate in the degradation of 4-chlorophenol and Orange II under daylight irradiation, Appl. Catal., B, 76, 73, 10.1016/j.apcatb.2007.05.007
Cong, 2014, Tantalum and aluminum co-doped iron oxide as a robust photocatalyst for water oxidation, Appl. Catal., B, 147, 733, 10.1016/j.apcatb.2013.10.009
Pradhan, 2013, Fabrication of S, N co-doped α-Fe2O3 nanostructures: effect of doping, OH radical formation, surface area, [110] plane and particle size on the photocatalytic activi, RSC Adv., 3, 7912, 10.1039/c3ra23088k
Gumy, 2008, Effect of suspended TiO2 physicochemical characteristics on benzene derivatives photocatalytic degradation, Appl. Catal., B, 78, 19, 10.1016/j.apcatb.2007.08.007
Wang, 2010, A facile method for the preparation of titania-coated magnetic porous silica and its photocatalytic activity under UV or visible light, Colloids Surf. A, 360, 184, 10.1016/j.colsurfa.2010.02.030
Dijkstra, 2001, Comparison of the efficiency of immobilized and suspended systems in photocatalytic degradation, Catal. Today, 66, 487, 10.1016/S0920-5861(01)00257-7
Daskalaki, 2011, Solar light-induced degradation of bisphenol-A with TiO2 immobilized on Ti, Catal. Today, 161, 110, 10.1016/j.cattod.2010.09.018
Li, 2012, Application of superconducting HGMS technology on turbid wastewater treatment from converter, Sep. Purif. Technol., 84, 56, 10.1016/j.seppur.2011.09.034
Oka, 2008, Application of HTS bulk magnet system to the magnetic separation techniques for water purification, Phys. C: Supercond., 468, 2128, 10.1016/j.physc.2008.05.234
Gogate, 2004, A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions, Adv. Environ. Res., 8, 501, 10.1016/S1093-0191(03)00032-7
Alibeigi, 2008, Phase transformation of iron oxide nanoparticles by varying the molar ratio of Fe2+:Fe3+, Chem. Eng. Technol., 31, 1591, 10.1002/ceat.200800093
Arndt, 2014, Ethylene diamine-assisted synthesis of iron oxide nanoparticles in high-boiling polyolys, J. Colloid Interface Sci., 417, 188, 10.1016/j.jcis.2013.11.023
Wang, 2014, Growth of Fe3O4 nanoparticles with tunable sizes and morphologies using organic amine, Mater. Res. Bull., 49, 514, 10.1016/j.materresbull.2013.09.019
Haw, 2010, Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents, Ceram. Int., 36, 1417, 10.1016/j.ceramint.2010.02.005
Kumar, 2013, Surfactant free solvothermal synthesis of monodispersed 3D hierarchical Fe3O4 microspheres, Mater. Lett., 110, 98, 10.1016/j.matlet.2013.08.005
Li, 2014, One-pot synthesis of grass-like Fe3O4 nanostructures by a novel microemulsion-assisted solvothermal method, Ceram. Int., 40, 1059, 10.1016/j.ceramint.2013.06.104
Choi, 2015, Colloidal stability of iron oxide nanoparticles with multivalent polymer surfactants, J. Colloid Interface Sci., 443, 8, 10.1016/j.jcis.2014.11.068
Soares, 2014, Effects of surfactants on the magnetic properties of iron oxide colloids, J. Colloid Interface Sci., 419, 46, 10.1016/j.jcis.2013.12.045
Nunes, 2006, Synthesis and characterization of poly(ethyl methacrylate-co-methacrylic acid) magnetic particles via miniemulsion polymerization, Polymer, 47, 7646, 10.1016/j.polymer.2006.09.006
Lee, 2014, Hetero-structured semiconductor nanomaterials for photocatalytic applications, J. Ind. Eng. Chem., 20, 363, 10.1016/j.jiec.2013.11.050
Shylesh, 2010, Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed., 49, 3428, 10.1002/anie.200905684
Tang, 2011, Arsenic (III,V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method, J. Hazard. Mater., 192, 131
Cudennec, 2005, Topotactic transformations of goethite and lepidocrocite into hematite and maghemite, Solid State Sci., 7, 520, 10.1016/j.solidstatesciences.2005.02.002
J.M. Bigham, R.W. Fitzpatrick, D.G. Schulze, Iron oxides, in: J.B. Dixon, D.G. Schulze (Eds.) Soil Mineralogy with Environmental Applications, Soil Science Society of America Book Series, 2002, pp. 323–366.
Can, 2012, A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance, J. Alloy. Compd., 542, 241, 10.1016/j.jallcom.2012.07.091
Jia, 2014, Synthesis of 3D hierarchical porous iron oxides for adsorption of Congo red from dye wastewater, J. Alloy. Compd., 622, 587, 10.1016/j.jallcom.2014.10.125
Tadic, 2012, Synthesis, morphology and microstructure of pomegranate-like hematite (α-Fe2O3) superstructure with high coercivity, J. Alloy. Compd., 543, 118, 10.1016/j.jallcom.2012.07.047
Ramimoghadam, 2014, Progress in electrochemical synthesis of magnetic iron oxide nanoparticles, J. Magn. Magn. Mater., 368, 207, 10.1016/j.jmmm.2014.05.015
Lu, 2007, Magnetic nanoparticles: Synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 46, 1222, 10.1002/anie.200602866
Liu, 2012, Magnetic nano-photocatalysts: preparation, structure, and application, 99, 10.1007/978-94-007-2442-6_4
Ambashta, 2010, Water purification using magnetic assistance: a review, J. Hazard. Mater., 180, 38, 10.1016/j.jhazmat.2010.04.105
Koksharov, 2009, Magnetism of nanoparticles: effects of size, shape, and interactions, 197
Akbarzadeh, 2012, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine, Nanoscale Res. Lett., 7, 10.1186/1556-276X-7-144
R.M. Cornell, U. Schwertmann, Electronic, electrical and magnetic properties and colour, in The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, second ed., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003, pp. 111–137.
Sharifi, 2012, Ferrite-based magnetic nanofluids used in hyperthermia applications, J. Magn. Magn. Mater., 324, 903, 10.1016/j.jmmm.2011.10.017
Tang, 2006, Facile route to α-FeOOH and α-Fe2O3 nanorods and magnetic property of α-Fe2O3 nanorods, Inorg. Chem., 45, 5196, 10.1021/ic060097b
Wu, 2006, Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors, J. Phys. Chem. B, 110, 17806, 10.1021/jp0633906
Teja, 2009, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Prog. Cryst. Growth Charact. Mater., 55, 22, 10.1016/j.pcrysgrow.2008.08.003
Ho, 2011, Monodisperse magnetic nanoparticles for theranostic applications, Acc. Chem. Res., 44, 875, 10.1021/ar200090c
Pankhurst, 2003, Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys., 36, R167, 10.1088/0022-3727/36/13/201
Polshettiwar, 2011, Magnetically recoverable nanocatalysts, Chem. Rev., 111, 3036, 10.1021/cr100230z
Vedavyasan, 2001, Potential use of magnetic fields – a perspective, Desalination, 134, 105, 10.1016/S0011-9164(01)00120-5
Liu, 2011, The combined use of magnetic field and iron-based complex in advanced treatment of pulp and paper wastewater, Chem. Eng. J., 178, 232, 10.1016/j.cej.2011.10.058
Zaidi, 2014, Magnetic field application and its potential in water and wastewater treatment systems, Sep. Purif. Rev., 43, 206, 10.1080/15422119.2013.794148
Ohara, 2001, Magnetic separation using superconducting magnets, Physica C, 357–360, 1272, 10.1016/S0921-4534(01)00530-5
Gupta, 2005, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26, 3995, 10.1016/j.biomaterials.2004.10.012
Wu, 2008, Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies, Nanoscale Res. Lett., 3, 397, 10.1007/s11671-008-9174-9
El-Sheikh, 2009, Catalytic performance of nanostructured iron oxides synthesized by thermal decomposition technique, J. Alloys Compd., 487, 716, 10.1016/j.jallcom.2009.08.053
Ozel, 2015, Growth and characterizations of magnetic nanoparticles under hydrothermal conditions: Reaction time and temperature, J. Magn. Magn. Mater., 373, 213, 10.1016/j.jmmm.2014.02.072
Zhang, 2010, Surface engineering of core/shell iron/iron oxide nanoparticles from microemulsions for hyperthermia, Mater. Sci. Eng.: C, 30, 92, 10.1016/j.msec.2009.09.003
Li, 2011, Magnetic Fe3O4 nanoparticles: Synthesis and application in water treatment, Nanosci. Nanotechnol.-Asia, 1, 14
Otake, 2007, Experimental evidence for non-redox transformations between magnetite and hematite under H2-rich hydrothermal conditions, Earth Planet. Sci. Lett., 257, 60, 10.1016/j.epsl.2007.02.022
Mahmed, 2014, The magnetic and oxidation behavior of bare and silica-coated iron oxide nanoparticles synthesized by reverse co-precipitation of ferrous ion (Fe2+) in ambient atmosphere, J. Magn. Magn. Mater., 353, 15, 10.1016/j.jmmm.2013.10.012
Jing, 2012, One-step reverse precipitation synthesis of water-dispersible superparamagnetic magnetite nanoparticles, J. Nanopart. Res., 14, 1, 10.1007/s11051-012-0827-3
Ahniyaz, 2008, Preparation of iron oxide nanocrystals by surfactant-free or oleic acid-assisted thermal decomposition of a Fe(III) alkoxide, J. Magn. Magn. Mater., 320, 781, 10.1016/j.jmmm.2007.08.018
Amara, 2012, Solventless thermal decomposition of ferrocene as a new approach for one-step synthesis of magnetite nanocubes and nanospheres, J. Mater. Chem., 22, 2188, 10.1039/C1JM13942H
Sun, 2002, Size-controlled synthesis of magnetite nanoparticles, J. Am. Chem. Soc., 124, 8204, 10.1021/ja026501x
Yu, 2004, Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts, Chem. Commun., 10, 2306, 10.1039/b409601k
Soon, 2007, Kinetics of monodisperse iron oxide nanocrystal formation by "heating-up" process, J. Am. Chem. Soc., 129, 12571, 10.1021/ja074633q
Singhal, 2007, Synthesis of tris(N,N′-dialkyldithiocarbamato) iron(III) complexes and their thermal decomposition studies by various techniques, J. Alloy. Compd., 428, 72, 10.1016/j.jallcom.2006.03.080
Ştefănescu, 2007, Thermal decomposition of some metal-organic precursors, J. Therm. Anal. Calorim., 88, 27, 10.1007/s10973-006-8003-6
Srivastava, 2013, Production of pig iron by utilizing biomass as a reducing agent, Int. J. Miner. Process., 119, 51, 10.1016/j.minpro.2012.12.008
Jang, 2010, Investigation of the slab heating characteristics in a reheating furnace with the formation and growth of scale on the slab surface, Int. J. Heat Mass Transf., 53, 4326, 10.1016/j.ijheatmasstransfer.2010.05.061
Jay, 2008, Al-coated iron particles: synthesis, characterization and improvement of oxidation resistance, Surf. Coat. Technol., 202, 4302, 10.1016/j.surfcoat.2008.04.001
Herrera, 2013, Influence of aging time of oleate precursor on the magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method, J. Magn. Magn. Mater., 328, 41, 10.1016/j.jmmm.2012.09.069
El-Sheikh, 2009, Catalytic performance of nanostructured iron oxides synthesized by thermal decomposition technique, J. Alloy. Compd., 487, 716, 10.1016/j.jallcom.2009.08.053
Snovski, 2014, Synthesis and characterization of iron, iron oxide and iron carbide nanostructures, J. Magn. Magn. Mater., 349, 35, 10.1016/j.jmmm.2013.08.043
Weiwei, 2008, Room temperature synthesis of rod-like FeC2O4·2H2O and its transition to maghemite, magnetite and hematite nanorods through controlled thermal decomposition, Nanotechnology, 19, 065602, 10.1088/0957-4484/19/6/065602
Kozakova, 2015, Magnetic needle-like iron oxide particles prepared by microwave-assisted thermal decomposition technique, Mater. Lett., 138, 116, 10.1016/j.matlet.2014.09.125
Liu, 2013, Simple solvothermal synthesis of hydrophobic magnetic monodispersed Fe3O4 nanoparticles, Mater. Res. Bull., 48, 416, 10.1016/j.materresbull.2012.10.060
Zhang, 2009, Solvothermal synthesis of well-dispersed NaMgF3 nanocrystals and their optical properties, J. Colloid Interface Sci., 329, 103, 10.1016/j.jcis.2008.09.076
Wu, 2013, Single-crystalline α-Fe2O3 nanostructures: Controlled synthesis and high-index plane-enhanced photodegradation by visible light, J. Mater. Chem. A, 1, 6888, 10.1039/c3ta10886d
Liang, 2013, Synthesis of magnetite submicrospheres with tunable size and superparamagnetism by a facile polyol process, Mater. Chem. Phys., 139, 383, 10.1016/j.matchemphys.2012.10.027
Abbas, 2013, Synthesis of high magnetization hydrophilic magnetite (Fe3O4) nanoparticles in single reaction-Surfactantless polyol process, Ceram. Int., 39, 7605, 10.1016/j.ceramint.2013.03.015
Xu, 2011, α-Fe2O3 hierarchically hollow microspheres self-assembled with nanosheets: Surfactant-free solvothermal synthesis, magnetic and photocatalytic properties, CrystEngComm, 13, 5162, 10.1039/c1ce05252g
Hu, 2009, Ultrasmall, water-soluble magnetite nanoparticles with high relaxivity for magnetic resonance imaging, J. Phys. Chem. C, 113, 20855, 10.1021/jp907216g
Guo, 2014, Fe3O4–CNTs nanocomposites: Inorganic dispersant assisted hydrothermal synthesis and application in lithium ion batteries, J. Solid State Chem., 213, 104, 10.1016/j.jssc.2014.02.016
Zhu, 2012, Hydrothermal synthesis of hematite nanoparticles and their electrochemical properties, J. Phys. Chem. C, 116, 16276, 10.1021/jp304041m
Liang, 2010, Synthesis and properties of magnetite Fe3O4 via a simple hydrothermal route, Solid State Sci., 12, 1422, 10.1016/j.solidstatesciences.2010.05.022
Shariful Islam, 2012, A comparative study on heat dissipation, morphological and magnetic properties of hyperthermia suitable nanoparticles prepared by co-precipitation and hydrothermal methods, Bull. Mater. Sci., 35, 1047, 10.1007/s12034-012-0414-3
Li, 2013, Microwave-solvothermal synthesis of Fe3O4 magnetic nanoparticles, Mater. Lett., 107, 23, 10.1016/j.matlet.2013.05.117
Han, 2012, Hierarchical flower-like Fe3O4 and γ-Fe2O3 nanostructures: Synthesis, growth mechanism and photocatalytic properties, CrystEngComm, 14, 4692, 10.1039/c2ce06685h
Khollam, 2002, Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders, Mater. Lett., 56, 571, 10.1016/S0167-577X(02)00554-2
Liu, 2014, Ultrasonic-assisted ultra-rapid synthesis of monodisperse meso-SiO2@Fe3O4 microspheres with enhanced mesoporous structure, Ultrason. Sonochem., 21, 505, 10.1016/j.ultsonch.2013.08.010
Aubert, 2010, Functional silica nanoparticles synthesized by water-in-oil microemulsion processes, J. Colloid Interface Sci., 341, 201, 10.1016/j.jcis.2009.09.064
Lu, 2013, Surfactant effects on the microstructures of Fe3O4 nanoparticles synthesized by microemulsion method, Colloids Surf. A, 436, 675, 10.1016/j.colsurfa.2013.08.004
Zhang, 2008, Fabrication and characterization of hollow Fe3O4 nanospheres in a microemulsion, Mater. Lett., 62, 4053, 10.1016/j.matlet.2008.05.023
Holmberg, 2004, Surfactant-templated nanomaterials synthesis, J. Colloid Interface Sci., 274, 355, 10.1016/j.jcis.2004.04.006
Li, 2014, Single-microemulsion-based solvothermal synthesis of magnetite microflowers, Ceram. Int., 40, 4791, 10.1016/j.ceramint.2013.09.025
Mathew, 2007, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, Chem. Eng. J., 129, 51, 10.1016/j.cej.2006.11.001
Zhang, 2009, Photoelectrocatalytic materials for environmental applications, J. Mater. Chem., 19, 5089, 10.1039/b821991e
Kitano, 2010, Heterogeneous photocatalytic cleavage of water, J. Mater. Chem., 20, 627, 10.1039/B910180B
Pelaez, 2012, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal., B, 125, 331, 10.1016/j.apcatb.2012.05.036
Niu, 2010, Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures, ACS Nano, 4, 681, 10.1021/nn901119a
Karunakaran, 2013, Photocatalytic and bactericidal activities of hydrothermally and sonochemically prepared Fe2O3–SnO2 nanoparticles, Mater. Sci. Semicond. Process., 16, 818, 10.1016/j.mssp.2012.12.030
Preethi, 2014, Photocatalytic hydrogen production using Fe2O3-based core shell nano particles with ZnS and CdS, Int. J. Hydrog. Energy, 39, 1613, 10.1016/j.ijhydene.2013.11.029
Liu, 2009, Preparation and characterization of Fe3O4/CdS nanocomposites and their use as recyclable photocatalysts, Cryst. Growth Des., 9, 197, 10.1021/cg800213w
Ju, 2014, A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity, Chem. Eng. J., 236, 430, 10.1016/j.cej.2013.10.001
Hosseini, 2014, Synthesis, characterization and performance evaluation of three-layered photoanodes by introducing a blend of WO3 and Fe2O3 for dye degradation, Appl. Surf. Sci., 289, 53, 10.1016/j.apsusc.2013.10.089
Xi, 2011, Fe3O4/WO3 Hierarchical core–shell structure: High-performance and recyclable visible-light photocatalysis, Chem. – Eur. J, 17, 5145, 10.1002/chem.201002229
Bi, 2013, Synergism between Fe2O3 and WO3 particles: photocatalytic activity enhancement and reaction mechanism, J. Mol. Catal. A: Chem., 367, 103, 10.1016/j.molcata.2012.09.031
Zhou, 2011, Fabrication of TiO2-coated magnetic nanoparticles on functionalized multi-walled carbon nanotubes and their photocatalytic activity, Synth. Met., 161, 2199, 10.1016/j.synthmet.2011.07.021
Young Kim, 2012, Graphene-carbon nanotube composite as an effective conducting scaffold to enhance the photoelectrochemical water oxidation activity of a hematite film, RSC Adv., 2, 9415, 10.1039/c2ra21169f
Pradhan, 2013, Fabrication of α-Fe2O3 Nanorod/RGO composite: A novel hybrid photocatalyst for phenol degradation, ACS Appl. Mater. Interfaces, 5, 9101, 10.1021/am402487h
Dong, 2014, Photocatalytic oxidation of methyl orange in water phase by immobilized TiO2-carbon nanotube nanocomposite photocatalyst, Appl. Surf. Sci., 296, 1, 10.1016/j.apsusc.2013.12.128
Ljubas, 2014, Magnetizing of nano-materials on example of Degussa’s P-25 TiO2 photocatalyst: synthesis of magnetic aggregates, characterization and possible use, Sep. Purif. Technol., 136, 274, 10.1016/j.seppur.2014.09.018
Park, 2013, Surface modification of TiO2 photocatalyst for environmental applications, J. Photochem. Photobiol. C, 15, 1, 10.1016/j.jphotochemrev.2012.10.001
Lei, 2006, Photodegradation of orange I in the heterogeneous iron oxide–oxalate complex system under UVA irradiation, J. Hazard. Mater., 137, 1016, 10.1016/j.jhazmat.2006.03.028
Shi, 2012, TiO2/activated carbon fibers photocatalyst: effects of coating procedures on the microstructure, adhesion property, and photocatalytic ability, J. Colloid Interface Sci., 388, 201, 10.1016/j.jcis.2012.08.038
Bhukal, 2015, Mg–Co–Zn magnetic nanoferrites: Characterization and their use for remediation of textile wastewater, Superlattices Microstruct., 77, 134, 10.1016/j.spmi.2014.11.013
Olsson, 2009, Ferromagnetic compounds for high efficiency photovoltaic conversion: The case of AlP:Cr, Phys. Rev. Lett., 102, 227204, 10.1103/PhysRevLett.102.227204
Wang, 2013, Degradation kinetics of phenol by a titanium dioxide photocatalyst coupled with a magnetic field, React. Kinet., Mech. Catal., 109, 273, 10.1007/s11144-012-0537-y
Xie, 2013, Magnetic composite ZnFe2O4/SrFe12O19: preparation, characterization, and photocatalytic activity under visible light, Appl. Surf. Sci., 273, 684, 10.1016/j.apsusc.2013.02.113
Joonwichien, 2012, Effect of static magnetic field on photocatalytic degradation of Methylene Blue over ZnO and TiO2 powders, Appl. Magn. Reson., 42, 17, 10.1007/s00723-011-0270-0
Zhu, 2010, Magnetic nanocomposites: a new perspective in catalysis, ChemCatChem, 2, 365, 10.1002/cctc.200900314
Briceño, 2012, Structural, catalytic and magnetic properties of Cu1−XCoXFe2O4, Appl. Surf. Sci., 263, 100, 10.1016/j.apsusc.2012.09.007
Zhan, 2014, Magnetic photocatalysts of cenospheres coated with Fe3O4/TiO2 core/shell nanoparticles decorated with Ag nanopartilces, Ceram. Int., 40, 8547, 10.1016/j.ceramint.2014.01.069
Fang, 2013, Superoxide mediated production of hydroxyl radicals by magnetite nanoparticles: demonstration in the degradation of 2-chlorobiphenyl, J. Hazard. Mater., 250–251, 68, 10.1016/j.jhazmat.2013.01.054
Fang, 2013, Superoxide radical driving the activation of persulfate by magnetite nanoparticles: implications for the degradation of PCBs, Appl. Catal., B, 129, 325, 10.1016/j.apcatb.2012.09.042
Peng, 2007, Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles, Angew. Chem. Int. Ed., 46, 4155, 10.1002/anie.200700677
Tadic, 2014, Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment, Appl. Surf. Sci., 322, 255, 10.1016/j.apsusc.2014.09.181
Kishore, 2012, A novel thermal decomposition approach for the synthesis of silica-iron oxide core–shell nanoparticles, J. Alloy. Compd., 522, 51, 10.1016/j.jallcom.2012.01.076
Yue, 2012, Deposition of gold nanoparticles on β-FeOOH nanorods for detecting melamine in aqueous solution, J. Colloid Interface Sci., 367, 204, 10.1016/j.jcis.2011.10.024
Liang, 2014, α-Fe2O3/Pt hybrid nanorings and their enhanced photocatalytic activities, Ceram. Int., 40, 5653, 10.1016/j.ceramint.2013.11.001
Zeng, 2010, Hematite with the urchinlike structure: Its shape-selective synthesis, magnetism, and enhanced photocatalytic performance after TiO2 encapsulation, J. Phys. Chem. C, 114, 274, 10.1021/jp909111j
Xiao, 2014, Enhanced photocatalytic decolorization of methyl orange by gallium-doped α-Fe2O3, Mater. Sci. Semicond. Process., 24, 104, 10.1016/j.mssp.2014.03.028
Rahimi, 2013, Preparation, characterization and photocatalytic properties of Ba–Cd–Sr–Ti doped Fe3O4 nanohollow spheres on removal of congo red under visible-light irradiation, J. Supercond. Novel Magn., 26, 219, 10.1007/s10948-012-1716-9
Yang, 2013, Zn(ii)-doped γ-Fe2O3 single-crystalline nanoplates with high phase-transition temperature, superparamagnetic property and good photocatalytic property, RSC Adv., 3, 21994, 10.1039/c3ra43695k
Thimsen, 2011, Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting, Nano Lett., 11, 35, 10.1021/nl1022354
Chen, 2012, Enhanced visible photocatalytic activity of hybrid Pt/α-Fe2O3 nanorods, RSC Adv., 2, 10057, 10.1039/c2ra21897f
Hong, 2008, Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles, Mater. Res. Bull., 43, 2457, 10.1016/j.materresbull.2007.07.035
Zhang, 2014, Synthesis of a thin-layer MnO2 nanosheet-coated Fe3O4 nanocomposite as a magnetically separable photocatalyst, Langmuir, 30, 7006, 10.1021/la500726v
Su, 2014, Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions, Nanoscale, 6, 5181, 10.1039/c4nr00534a
Kim, 2014, Nano TiO2-functionalized magnetic-cored dendrimer as a photocatalyst, Appl. Catal., B, 147, 973, 10.1016/j.apcatb.2013.10.024
Liang, 2013, Multifunctional Fe3O4@C@Ag hybrid nanoparticles: Aqueous solution preparation, characterization and photocatalytic activity, Mater. Res. Bull., 48, 2415, 10.1016/j.materresbull.2013.02.066
Zhang, 2009, Bi2WO6@carbon/Fe3O4 microspheres: Preparation, growth mechanism and application in water treatment, J. Hazard. Mater., 172, 1193, 10.1016/j.jhazmat.2009.07.123
Xu, 2012, Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ., 424, 1, 10.1016/j.scitotenv.2012.02.023
Guo, 2010, S-doped α-Fe2O3 as a highly active heterogeneous Fenton-like catalyst towards the degradation of acid orange 7 and phenol, Appl. Catal., B, 96, 162, 10.1016/j.apcatb.2010.02.015
Feitoza, 2014, Fabrication of glycine-functionalized maghemite nanoparticles for magnetic removal of copper from wastewater, J. Hazard. Mater., 264, 153, 10.1016/j.jhazmat.2013.11.022
Wu, 2014, Phase transformation-induced crystal plane effect of iron oxide micropine dendrites on gaseous toluene photocatalytic oxidation, Appl. Surf. Sci., 288, 398, 10.1016/j.apsusc.2013.10.046
Batzill, 2011, Fundamental aspects of surface engineering of transition metal oxide photocatalysts, Energy Environ. Sci., 4, 3275, 10.1039/c1ee01577j
Šutka, 2014, Precipitation synthesis of magnetite Fe3O4 nanoflakes, Ceram. Int., 40, 11437, 10.1016/j.ceramint.2014.03.140
Tang, 2012, , Titanium and magnesium Co-alloyed hematite thin films for photoelectrochemical water splitting, J. Appl. Phys., 111, 10.1063/1.3699016
Hu, 2008, Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting, Chem. Mater., 20, 3803, 10.1021/cm800144q
Kleiman-Shwarsctein, 2008, Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting, J. Phys. Chem. C, 112, 15900, 10.1021/jp803775j
Wei, 2012, Enhanced photocatalytic activity of hybrid Fe2O3–Pd nanoparticulate catalysts, Chem. Sci., 3, 1090, 10.1039/c2sc00673a
Jang, 2009, Development of a potential Fe2O3-based photocatalyst thin film for water oxidation by scanning electrochemical microscopy: Effects of Ag-Fe2O3 nanocomposite and Sn doping, Chem. Mater., 21, 4803, 10.1021/cm901056c
Ramchiary, 2014, Ag deposited mixed phase titania visible light photocatalyst—superiority of Ag-titania and mixed phase titania co-junction, Appl. Surf. Sci., 305, 33, 10.1016/j.apsusc.2014.02.150
Kim, 2005, Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals, J. Am. Chem. Soc., 127, 544, 10.1021/ja047107x
Beydoun, 2002, Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide, J. Mol. Catal. A: Chem, 180, 193, 10.1016/S1381-1169(01)00429-0
Beydoun, 2000, Novel photocatalyst: titania-coated magnetite, activity and photodissolution, J. Phys. Chem. B, 104, 4387, 10.1021/jp992088c
Yong, 2000, The absolute energy positions of conduction and valence bands of selected semiconducting minerals, Am. Mineral., 85, 543, 10.2138/am-2000-0416
Maya-Treviño, 2014, Activity of the ZnO–Fe2O3 catalyst on the degradation of Dicamba and 2,4-D herbicides using simulated solar light, Ceram. Int., 40, 8701, 10.1016/j.ceramint.2014.01.088
Qin, 2014, , Facile preparation of mesoporous TiO2(B) nanowires with well-dispersed Fe2O3 nanoparticles and their photochemical catalytic behavior, Appl. Catal. B, 150–151, 544, 10.1016/j.apcatb.2013.12.055
Akhavan, 2009, Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation, Appl. Catal., A, 369, 77, 10.1016/j.apcata.2009.09.001
Jing, 2013, , Photodegradation of quinoline in water over magnetically separable Fe3O4/TiO2 composite photocatalysts, Chem. Eng. J., 219, 355, 10.1016/j.cej.2012.12.058
Zhang, 2009, Fe3O4 coupled BiOCl: a highly efficient magnetic photocatalyst, Appl. Catal., B, 90, 458, 10.1016/j.apcatb.2009.04.005
Shpaisman, 2008, One-step synthesis of air-stable nanocrystalline iron particles by thermal decomposition of triiron dodecacarbonyl, J. Alloy. Compd., 454, 89, 10.1016/j.jallcom.2007.01.002
Cheng, 2012, Anatase nanocrystals coating on silica-coated magnetite: role of polyacrylic acid treatment and its photocatalytic properties, Chem. Eng. J., 210, 80, 10.1016/j.cej.2012.08.059
Ferroudj, 2013, Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants, Appl. Catal., B, 136–137, 9, 10.1016/j.apcatb.2013.01.046
Deng, 2005, Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach, Colloids Surf., A, 262, 87, 10.1016/j.colsurfa.2005.04.009
Wang, 2006, Synthesis and characterization of a novel magnetic carrier with its composition of Fe3O4/carbon using hydrothermal reaction, J. Magn. Magn. Mater., 302, 397, 10.1016/j.jmmm.2005.09.044
Inagaki, 2012, Carbon coating for enhancing the functionalities of materials, Carbon, 50, 3247, 10.1016/j.carbon.2011.11.045
Liu, 2011, Magnetic-field induced formation of 1D Fe3O4/C/CdS coaxial nanochains as highly efficient and reusable photocatalysts for water treatment, J. Mater. Chem., 21, 18359, 10.1039/c1jm13789a
Cheng, 2014, Different combinations of Fe3O4 microsphere, Polypyrrole and silver as core–shell nanocomposites for adsorption and photocatalytic application, Adv. Powder Technol., 25, 1600, 10.1016/j.apt.2014.05.013
Guo, 2009, Synthesis and microwave absorption of uniform hematite nanoparticles and their core–shell mesoporous silica nanocomposites, J. Mater. Chem., 19, 6706, 10.1039/b910606e
Lu, 2008, Superdispersible PVP-coated Fe3O4 nanocrystals prepared by a "one-pot" reaction, J. Phys. Chem. B, 112, 14390, 10.1021/jp8025072
Lu, 2014, Microwave synthesis of a novel magnetic imprinted TiO2 photocatalyst with excellent transparency for selective photodegradation of enrofloxacin hydrochloride residues solution, Chem. Eng. J., 249, 15, 10.1016/j.cej.2014.03.077
Wang, 2015, A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol, Appl. Catal., B, 172–173, 73, 10.1016/j.apcatb.2015.02.016
Farré, 2009, Ecotoxicity and analysis of nanomaterials in the aquatic environment, Anal. Bioanal. Chem., 393, 81, 10.1007/s00216-008-2458-1
Liu, 2008, Toxicology studies of a superparamagnetic iron oxide nanoparticle in vivo, Adv. Mater. Res., 47–50, 1097, 10.4028/www.scientific.net/AMR.47-50.1097
Mahmoudi, 2010, A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles, Colloids Surf., B, 75, 300, 10.1016/j.colsurfb.2009.08.044
Mahmoudi, 2011, Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine, Chem. Rev., 111, 253, 10.1021/cr1001832
Genuino, 2013, Chapter 3 - Green synthesis of iron nanomaterials for oxidative catalysis of organic environmental pollutants, 41
Rahim Pouran, 2014, Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions, J. Clean. Prod., 64, 24, 10.1016/j.jclepro.2013.09.013
Rahman, 2014, Bench-scale evaluation of drinking water treatment parameters on iron particles and water quality, Water Res., 48, 137, 10.1016/j.watres.2013.09.018
Rodríguez, 2009, Photocatalytic degradation of organics in water in the presence of iron oxides: Influence of carboxylic acids, Appl. Catal., B, 92, 240, 10.1016/j.apcatb.2009.07.013
Department of Environment Malaysia (DOE), Environmental Quality Act 1974 (Act 127), 1974.
Minella, 2014, , Photo-Fenton oxidation of phenol with magnetite as iron source, Appl. Catal., B, 154–155, 102, 10.1016/j.apcatb.2014.02.006
Pastrana-Martínez, 2014, Degradation of diphenhydramine by photo-Fenton using magnetically recoverable iron oxide nanoparticles as catalyst, Chem. Eng. J., 261, 45, 10.1016/j.cej.2014.04.117