Research on remote sensing image storage management and a fast visualization system based on cloud computing technology

Lichun Yang1,2, Wenwu He3, Qiang Xia3, Z. Jiao3, Fang Huang3
1Jiangsu Automation Research Institute, Lianyungang, China
2School of Transportation Science and Engineering, Beihang University, Beijing, China
3School of Recourses and Environment, University of Electronic Science and Technology of China (UESTC), Chengdu, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65(1):2–16

Deren LI, Liangpei Z, Guisong X (2014) Automatic analysis and mining of remote sensing big data. Acta Geodaetica Cartogr Sin 43(12):1211

Chi M, Plaza A, Benediktsson JA et al (2016) Big data for remote sensing: challenges and opportunities. Proc IEEE 104(11):2207–2219

Huang YQ (2019) The concept and development trend of spatial database management system. China Manage Informationization 22(08):165–166

Lü XF, Cheng C, Gong J et al (2011) Review of data storage and management technologies for massive remote sensing data. Sci China Technol Sci 54:3220–3232

Yan J, Liu Y, Wang L et al (2021) An efficient organization method for large-scale and long time-series remote sensing data in a cloud computing environment. IEEE J Sel Top Appl Earth Observ Remote Sens 14:9350–9363

Wang L, Ma Y, Yan J et al (2018) PipsCloud: high performance cloud computing for remote sensing big data management and processing. Futur Gener Comput Syst 78:353–368

Cheng Y, Zhou K, Wang J, Yan J (2020) Big earth observation data integration in remote sensing based on a distributed spatial framework. Remote Sens 12(6):972. https://doi.org/10.3390/rs12060972

Jing W, Tian D (2018) An improved distributed storage and query for remote sensing data. Procedia Comput Sci 129:238–247

Li J, Zhang P, Li Y et al (2017) A data-check based distributed storage model for storing hot temporary data. Futur Gener Comput Syst 73:13–21

Zheng K, Fu Y (2013) Research on vector spatial data storage schema based on Hadoop platform. Int J Database Theory Appl 6(5):85–94

Zhong Y, Sun S, Liao H, Zhao Y, Fang J (2011) A novel method to manage very large raster data on distributed key-value storage system. In: 2011 19th International Conference on Geoinformatics. Shanghai, China, pp 1–6. https://doi.org/10.1109/GeoInformatics.2011.5980711

Rajak R, Raveendran D, Bh MC, Medasani SS (2015) High resolution satellite image processing using Hadoop framework. In: 2015 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM). Bangalore, India, pp 16–21. https://doi.org/10.1109/CCEM.2015.16

Zhu J, Zhang Z, Zhao F et al (2023) Efficient management and scheduling of massive remote sensing image datasets. ISPRS Int J Geo-Information 12(5):199

Zhou X, Wang X, Zhou Y et al (2021) Rsims: large-scale heterogeneous remote sensing images management system[J]. Remote Sens 13(9):1815

Wang C, Hu F, Hu X et al (2015) A Hadoop-based distributed framework for efficient managing and processing big remote sensing images. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2:63–66

Kong W, Wang T, Liu L et al (2023) A novel design and application of spatial data management platform for natural resources. J Clean Prod 411:137183

Wei H, Yuheng Z (2017) The massive remote sensing data organization and management strategies//MATEC Web of Conferences. EDP Sciences 128:02011

Wang S, Li G, Yao X et al (2019) A distributed storage and access approach for massive remote sensing data in MongoDB. ISPRS Int J Geo-Information 8(12):533

Rathore MM, Ahmad A, Paul A et al (2016) Urban planning and building smart cities based on the internet of things using big data analytics. Comput Netw 101:63–80

Shan TJ, Zhong HW et al (2019) Building of remote sensing images tile pyramid based on Spark. Intell Comput Appl 9(04):226–229

Zaharia M, Xin RS, Wendell P et al (2016) Apache spark a unified engine for big data processing. Commun ACM 59(11):56–65

Kini A, Emanuele R, Geotrellis (2014) Adding geospatial capabilities to Spark. In: Spark Summit 2014, from https://docs.huihoo.com/apache/spark/summit/2014/Geotrellis-Adding-Geospatial-Capabilities-to-Spark-Ameet-Kini-Rob-Emanuele.pdf

Chen X, Zhang C, Ge B et al (2016) Efficient historical query in HBase for spatio-temporal decision support. Int J Comput Commun Control 11(5):613–630

Jonasson M (2014) The Akka-board–performing mobility, disability and innovation. Disabil Soc 29(3):477–490

Farkas G (2017) Applicability of open-source web mapping libraries for building massive web GIS clients. J Geogr Syst 19(3):273–295

Huang F, Chen S, Wang Q et al (2023) Using deep learning in an embedded system for real-time target detection based on images from an unmanned aerial vehicle: vehicle detection as a case study[J]. Int J Digit Earth 16(1):910–936

Zhu Q, Huang F, Lu J et al (2017) Research on the implementation of multi-source remote sensing image management system based on B/S architecture. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, pp 5233–5236