Research on intelligent fault diagnosis of mechanical equipment based on sparse deep neural networks
Tóm tắt
Từ khóa
Tài liệu tham khảo
<b>Randall R. B., Antoni J. </b>Rolling element bearing diagnostics – a tutorial. Mechanical Systems and Signal Processing, Vol. 25, Issue 2, 2011, p. 485-520.
<b>Harris T. A., Kotzalas M. N. </b>Rolling Bearing Analysis Essential Concepts of Bearing Technology. CRC Press Inc., New York, 2007.
<b>Chen K. J. </b>Study on Ball Bearing Fault Diagnosis Based on Vibration Signals. Xidian University, Xi’an, 2011.
<b>Mahanty R. N., Gupta P. B. D. </b>Application of RBF neural network to fault classification and location in transmission lines. IEE Proceedings of Generation, Transmission and Distribution, Vol. 151, Issue 2, 2004, p. 201-212.
<b>Kankar P. K., Sharma S. C., Harsha S. P. </b>Vibration-based fault diagnosis of a rotor bearing system using artificial neural network and support vector machine. International Journal of Modelling, Identification and Control, Vol. 15, Issue 3, 2012, p. 185-198.
<b>Ahmed R., El Sayed M., Gadsden S. A., et al. </b>Automotive internal-combustion-engine fault detection and classification using artificial neural network techniques. IEEE Transactions on Vehicular Technology, Vol. 64, Issue 1, 2015, p. 21-33.
<b>Baklacioglu T., Turan O., Aydin H. </b>Dynamic modeling of exergy efficiency of turboprop engine components using hybrid genetic algorithm-artificial neural networks. Energy, Vol. 86, 2015, p. 709-721.
<b>Wei X. T., Pan H. X., Ma Q. F. </b>Application of particle swarm optimization based on neural network to fault diagnosis. Journal of Vibration, Measurement and Diagnosis, Vol. 26, Issue 2, 2006, p. 133-137.
<b>Yang X. S. </b>Firefly algorithm for multimodal optimization. Lecture Notes in Computer Science, Vol. 5972, 2009, p. 169-178.
<b>Samanta B., Al Balushi K.-R. </b>Artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mechanical systems and signal processing, Vol. 17, Issue 2, 2003, p. 317-328.
<b>Martins J. F., Pires V. F., Pires A. J. </b>Unsupervised neural-network-based algorithm for an on-line diagnosis of three-phase induction motor stator fault. IEEE Transactions on Industrial Electronics, Vol. 54, Issue 1, 2007, p. 259-264.
<b>Cheriyadat A. M. </b>Unsupervised feature learning for aerial scene classification. IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, Issue 1, 2014, p. 439-451.
<b>Erhan D., Bengio Y., Courville A., et al. </b>Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, Vol. 11, 2010, p. 625-660.
<b>Lee H., Pham P., Largman Y., et al. </b>Unsupervised feature learning for audio classification using convolutional deep belief networks. Advances in Neural Information Processing Systems, 2009, p. 1096-1104.
<b>Hinton G. E., Salakhutdinov R. R. </b>Reducing the dimensionality of data with neural networks. Science, Vol. 313, Issue 5786, 2006, p. 504-507.
<b>Ciregan D., Meier U., Schmidhuber J.</b> Multi-column deep neural networks for image classification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, p. 3642-3649.
<b>Simonyan K., Zisserman A. </b>Very deep convolutional networks for large-scale image recognition. Computer Vision and Pattern Recognition, 2015.
<b>Tang J., Deng C., Huang G. B., et al. </b>Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, Issue 3, 2015, p. 1174-1185.
<b>Hinton G., Deng L., Yu D., et al. </b>Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, Vol. 29, Issue 6, 2012, p. 82-97.
<b>Dahl G. E., Yu D., Deng L., et al. </b>Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Transactions on Audio, Speech, and Language Processing, Vol. 20, Issue 1, 2012, p. 30-42.
<b>Xu Y., Du J., Dai L. R. </b>An experimental study on speech enhancement based on deep neural networks. IEEE Signal Processing Letters, Vol. 21, Issue 1, 2014, p. 65-68.
<b>Coates A., Ng A. Y. </b>The importance of encoding versus training with sparse coding and vector quantization. Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, p. 921-928.
<b>Lyons J., Dehzangi A., Heffernan R., et al. </b>Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network. Journal of Computational Chemistry, Vol. 35, Issue 28, 2014, p. 2040-2046.
<b>Su S. Z., Liu Z. H., Xu S. P., et al. </b>Sparse auto-encoder based feature learning for human body detection in depth image. Signal Processing, Vol. 112, 2015, p. 43-52.
<b>Bengio Y., Lambin P., Popovici D. </b>Greedy layer wise training of deep networks. Advances in Neural Information Processing Systems 19, Vancouver, Canada, 2007, p. 153-160.
Case Western reserve university Bearing Data Center. Bearing Data Center Fault Test Data, http://www.eecs.case.edu/laboratory/bearing.
<b>Lei Y. G., Jia F., Xing S. B., Ding S. X. </b>An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data. IEEE Transactions on Industrial Electronics, Vol. 63, Issue 5, 2016, p. 3137-3147.
<b>Lin Y. H. </b>Study on Wind Turbine Fault Diagnosis Decision System Based on Wavelet Analysis and Neural Network Method. Xi’an University of Technology, Xi’an, 2014.