Research on adaptive temperature control in sound field induced by self-focused concave spherical transducer

Ultrasonics - Tập 50 - Trang 628-633 - 2010
Jiwen Hu1,2, Shengyou Qian1, Yajun Ding1
1College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
2College of Mathematics and Physics, University of South China, Hengyang 421001, China

Tài liệu tham khảo

Bardati, 1995, Lovisolo, SAR optimization in a phased array radio-frequency hyperthermia system, IEEE Trans. Biomed. Eng., 42, 1201, 10.1109/10.476127 Arora, 2005, Minimum-time thermal dose control of thermal therapies, IEEE Trans. Biomed. Eng., 52, 191, 10.1109/TBME.2004.840471 Potocki, 1992, Reduced-order modeling for hyperthermia control, IEEE Trans. Biomed. Eng., 35, 781 VanBaren, 1995, Multipoint temperature control during hyperthermia treatment: theory and simulation, IEEE Trans. Biomed. Eng., 42, 818, 10.1109/10.398643 Stauffer, 2001, Microwave array applicator for radiometry controlled superficial hyperthermia, Proc. SPIE, 42, 19, 10.1117/12.427866 Johnson, 2006, Automatic temperature controller for multielement array hyperthermia system, IEEE Trans. Biomed. Eng., 53, 1006, 10.1109/TBME.2006.873559 Arora, 2002, Model-predictive control of hyperthermia treatments, IEEE Trans. Biomed. Eng., 49, 629, 10.1109/TBME.2002.1010846 Kowalski, 2003, A temperature-based feedback control system for electromagnetic phased-array hyperthermia: theory and simulation, Phys. Med. Biol., 48, 633, 10.1088/0031-9155/48/5/306 Malinen, 2003, An optimal control approach for ultrasound induced heating, Int. J. Cont., 76, 1323, 10.1080/0020717031000149618 L. Sun, J. Schiano, N.B. Smith, Novel adaptive control methods for ultrasound hyperthermia treatment for prostate disease, IEEE 2003 Ultrasonics Symposium, Honolulu, October, 2003. Ebbini, 1989, Multiple-focus ultrasound phased-array pattern synthesis: optimal driving distributions for hyperthermia, IEEE Trans. Ultrason., 36, 540, 10.1109/58.31798 Lu, 2008, Image-guides 256-element phased-array focused ultrasound surgery, IEEE Eng. Med. Biol., 27, 84, 10.1109/MEMB.2008.923952 Kamakura, 2000, Model equation for strongly focused finite-amplitude sound beams, J. Acoust. Soc. Am., 107, 3035, 10.1121/1.429332 Hamilton, 1998, Model equation Pennes, 1948, Analysis of tissue and arterial blood temperature in the resting human forearm, J. Appl. Phys., 1, 93 Seip, 1996, Noninvasive real-time multipoint temperature control for ultrasound phased array treatments, IEEE Trans. Ultrason., 43, 1063, 10.1109/58.542050 Yoshida, 1996, Controller design for parabolic distributed parameter systems using finite integral transform techniques, J. Proc. Cont., 6, 359, 10.1016/0959-1524(95)00036-4 Wu, 2007, “Wide local ablation” of localized breast cancer using high intensity focused ultrasound, J .Surg. Oncol., 96, 130, 10.1002/jso.20769 Singh, 2008, Ultrasound hyperthermia control system for deep-seated tumours: ex vivo study of excised tumours modeling, of thermal profile and future nanoengineering aspects, IRBM, 29, 326, 10.1016/j.rbmret.2008.03.007 Cheng, 2008, Fast temperature optimization of multi-source hyperthermia applicators with reduced-order modeling of ‘virtual sources’, Phys. Med. Biol., 53, 1619, 10.1088/0031-9155/53/6/008 Liu, 2006, Nonlinear absorption in biological tissue for high intensity focused ultrasound, Ultrasonics, 44, e27, 10.1016/j.ultras.2006.06.035 Chao Tao, Jing Mu, Gonghuan Du, The simulation of strongly focused finite amplitude ultrasound and temperature field, in: ICA Symposium, Tokyo, 2004, pp. V3371–V3374.