Research on adaptive temperature control in sound field induced by self-focused concave spherical transducer
Tài liệu tham khảo
Bardati, 1995, Lovisolo, SAR optimization in a phased array radio-frequency hyperthermia system, IEEE Trans. Biomed. Eng., 42, 1201, 10.1109/10.476127
Arora, 2005, Minimum-time thermal dose control of thermal therapies, IEEE Trans. Biomed. Eng., 52, 191, 10.1109/TBME.2004.840471
Potocki, 1992, Reduced-order modeling for hyperthermia control, IEEE Trans. Biomed. Eng., 35, 781
VanBaren, 1995, Multipoint temperature control during hyperthermia treatment: theory and simulation, IEEE Trans. Biomed. Eng., 42, 818, 10.1109/10.398643
Stauffer, 2001, Microwave array applicator for radiometry controlled superficial hyperthermia, Proc. SPIE, 42, 19, 10.1117/12.427866
Johnson, 2006, Automatic temperature controller for multielement array hyperthermia system, IEEE Trans. Biomed. Eng., 53, 1006, 10.1109/TBME.2006.873559
Arora, 2002, Model-predictive control of hyperthermia treatments, IEEE Trans. Biomed. Eng., 49, 629, 10.1109/TBME.2002.1010846
Kowalski, 2003, A temperature-based feedback control system for electromagnetic phased-array hyperthermia: theory and simulation, Phys. Med. Biol., 48, 633, 10.1088/0031-9155/48/5/306
Malinen, 2003, An optimal control approach for ultrasound induced heating, Int. J. Cont., 76, 1323, 10.1080/0020717031000149618
L. Sun, J. Schiano, N.B. Smith, Novel adaptive control methods for ultrasound hyperthermia treatment for prostate disease, IEEE 2003 Ultrasonics Symposium, Honolulu, October, 2003.
Ebbini, 1989, Multiple-focus ultrasound phased-array pattern synthesis: optimal driving distributions for hyperthermia, IEEE Trans. Ultrason., 36, 540, 10.1109/58.31798
Lu, 2008, Image-guides 256-element phased-array focused ultrasound surgery, IEEE Eng. Med. Biol., 27, 84, 10.1109/MEMB.2008.923952
Kamakura, 2000, Model equation for strongly focused finite-amplitude sound beams, J. Acoust. Soc. Am., 107, 3035, 10.1121/1.429332
Hamilton, 1998, Model equation
Pennes, 1948, Analysis of tissue and arterial blood temperature in the resting human forearm, J. Appl. Phys., 1, 93
Seip, 1996, Noninvasive real-time multipoint temperature control for ultrasound phased array treatments, IEEE Trans. Ultrason., 43, 1063, 10.1109/58.542050
Yoshida, 1996, Controller design for parabolic distributed parameter systems using finite integral transform techniques, J. Proc. Cont., 6, 359, 10.1016/0959-1524(95)00036-4
Wu, 2007, “Wide local ablation” of localized breast cancer using high intensity focused ultrasound, J .Surg. Oncol., 96, 130, 10.1002/jso.20769
Singh, 2008, Ultrasound hyperthermia control system for deep-seated tumours: ex vivo study of excised tumours modeling, of thermal profile and future nanoengineering aspects, IRBM, 29, 326, 10.1016/j.rbmret.2008.03.007
Cheng, 2008, Fast temperature optimization of multi-source hyperthermia applicators with reduced-order modeling of ‘virtual sources’, Phys. Med. Biol., 53, 1619, 10.1088/0031-9155/53/6/008
Liu, 2006, Nonlinear absorption in biological tissue for high intensity focused ultrasound, Ultrasonics, 44, e27, 10.1016/j.ultras.2006.06.035
Chao Tao, Jing Mu, Gonghuan Du, The simulation of strongly focused finite amplitude ultrasound and temperature field, in: ICA Symposium, Tokyo, 2004, pp. V3371–V3374.