Chữ ký PAM50 dựa trên nghiên cứu và khả năng sống sót lâu dài ở bệnh nhân ung thư vú

Minya Pu1, Karen Messer2, Sherri R. Davies3, Tammi L. Vickery4, Emily Pittman1, Barbara A. Parker5, Matthew J. Ellis6, Shirley W. Flatt1, Catherine R. Marinac7, Sandahl H Nelson8, Elaine R. Mardis9, John P. Pierce2, Loki Natarajan2
1Moores Cancer Center, University of California, San Diego, San Diego, CA, USA
2Department of Family Medicine and Public Health, University of California, San Diego, 3855 Health Sciences Drive #0901, La Jolla, CA, 92093-0901, USA
3Department of Medicine, Washington University St. Louis, St. Louis, MO, USA
4Washington University St. Louis, McDonnell Genome Institute, St. Louis, MO, USA
5Department of Medicine, University of California, San Diego, San Diego, CA, USA
6Baylor College of Medicine, Lester and Sue Smith Breast Center, Houston, TX, USA
7Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
8Precision for Medicine, San Diego, CA, USA
9Nationwide Children’s Hospital, Institute for Genomic Medicine, Columbus, OH, USA

Tóm tắt

Tóm tắt Mục đích Các chữ ký đa gene cung cấp cái nhìn sinh học và phân tầng nguy cơ trong ung thư vú. Các kiểu phân loại phân tử nội sinh được xác định bởi sự biểu hiện mRNA của 50 gene (PAM50) có giá trị tiên đoán trong ung thư vú dương tính với thụ thể hormone ở phụ nữ mãn kinh. Tuy nhiên, đối với 25-40% trong nhóm nguy cơ trung bình PAM50, nguy cơ lâu dài vẫn không chắc chắn. Nghiên cứu của chúng tôi nhằm (i) kiểm tra giá trị tiên đoán lâu dài của chữ ký PAM50 trong ung thư vú trước và sau mãn kinh; (ii) điều tra xem mô hình PAM50 có thể được cải thiện bằng cách thêm các mRNA khác liên quan đến oncogenesis hay không. Phương pháp Chúng tôi đã sử dụng các mẫu FFPE lưu trữ từ 1723 bệnh nhân sống sót sau ung thư vú; chất lượng đọc cao đã được thu thập trên 1253 mẫu. Biểu hiện của bản sao được định lượng bằng cách sử dụng một bộ mã tùy chỉnh với các đầu dò cho > 100 mục tiêu. Các mô hình Cox đã đánh giá các chữ ký gene cho tình trạng tái phát ung thư vú và sự sống sót. Kết quả Trong hơn 15 năm theo dõi, các kiểu PAM50 có liên quan đến kết quả ung thư vú (P < 0.01) sau khi đã tính đến giai đoạn, grade và tuổi tại thời điểm chẩn đoán. Kết quả không khác biệt theo tình trạng mãn kinh tại thời điểm chẩn đoán. Phụ nữ có kiểu Luminal B (so với Luminal A) có nguy cơ cao hơn > 60%. Việc thêm một chữ ký hypoxia 13 gene đã cải thiện khả năng tiên đoán với nguy cơ cao hơn > 40% giữa tertiles hypoxia cao nhất và thấp nhất. Kết luận Các kiểu phân loại nội sinh PAM50 có khả năng tiên đoán độc lập cho sự sống sót lâu dài ở bệnh nhân ung thư vú, bất kể tình trạng mãn kinh. Việc thêm các chữ ký hypoxia đã cải thiện dự đoán nguy cơ. Nếu được lặp lại, việc tích hợp chữ ký hypoxia 13 gene vào công cụ đánh giá nguy cơ PAM50 hiện có có thể tinh chỉnh phân tầng nguy cơ và làm rõ hơn nữa điều trị cho ung thư vú.

Từ khóa


Tài liệu tham khảo

Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM, d’Assignies MS, Bergh J, Lidereau R, Ellis P, Harris A, Bogaerts J, Therasse P, Floore A, Amakrane M, Piette F, Rutgers E, Sotiriou C, Cardoso F, Piccart MJ, Consortium T (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98(17):1183–1192. https://doi.org/10.1093/jnci/djj329

Cardoso F, Piccart-Gebhart M, Van’t Veer L, Rutgers E, Consortium T (2007) The MINDACT trial: the first prospective clinical validation of a genomic tool. Mol Oncol 1(3):246–251. https://doi.org/10.1016/j.molonc.2007.10.004

Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M, Vickery T, Davies SR, Snider J, Stijleman IJ, Reed J, Cheang MCU, Mardis ER, Perou CM, Bernard PS, Ellis MJ (2010) A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res 16(21):5222–5232. https://doi.org/10.1158/1078-0432.ccr-10-1282

Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826. https://doi.org/10.1056/NEJMoa041588

Prat A, Ellis MJ, Perou CM (2012) Practical implications of gene-expression-based assays for breast oncologists. Nat Rev Clin Oncol 9(1):48–57. https://doi.org/10.1038/nrclinonc.2011.178

Tang G, Shak S, Paik S, Anderson S, Costantino J, Geyer CJ, Mamounas E, Wickerham D, Wolmark N (2011) Comparison of the prognostic and predictive utilities of the 21-gene Recurrence Score assay and Adjuvant! for women with node-negative, ER-positive breast cancer: results from NSABP B-14 and NSABP B-20. Breast Cancer Res Treat 127(1):133–142. https://doi.org/10.1007/s10549-010-1331-z

van’t Veer LJ, Dai HY, van de Vijver MJ, He YDD, Hart AAM, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536. https://doi.org/10.1038/415530a

Sestak I, Cuzick J (2015) Markers for the identification of late breast cancer recurrence. Breast Cancer Res 17:10. https://doi.org/10.1186/s13058-015-0516-0

Ellis MJ, Suman VJ, Hoog J, Lin L, Snider J, Prat A, Parker JS, Luo JQ, DeSchryver K, Allred DC, Esserman LJ, Unzeitig GW, Margenthaler J, Babiera GV, Marcom PK, Guenther JM, Watson MA, Leitch M, Hunt K, Olson JA (2011) Randomized Phase II neoadjuvant comparison between letrozole, anastrozole, and exemestane for postmenopausal women with estrogen receptor-rich stage 2 to 3 breast cancer: clinical and biomarker outcomes and predictive value of the baseline PAM50-based intrinsic subtype-ACOSOG Z1031. J Clin Oncol 29(17):2342–2349. https://doi.org/10.1200/Jco.2010.31.6950

Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He XP, Hu ZY, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167. https://doi.org/10.1200/jco.2008.18.1370

Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. https://doi.org/10.1038/35021093

Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874. https://doi.org/10.1073/pnas.191367098

Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100(14):8418–8423. https://doi.org/10.1073/pnas.0932692100

Buus R, Sestak I, Kronenwett R, Denkert C, Dubsky P, Krappmann K, Scheer M, Petry C, Cuzick J, Dowsett M (2016) Comparison of EndoPredict and EPclin with oncotype DX recurrence score for prediction of risk of distant recurrence after endocrine therapy. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djw149

Sestak I, Buus R, Cuzick J, Dubsky P, Kronenwett R, Denkert C, Ferree S, Sgroi D, Schnabel C, Baehner FL, Mallon E, Dowsett M (2018) Comparison of the performance of 6 prognostic signatures for estrogen receptor-positive breast cancer: a secondary analysis of a randomized clinical trial. JAMA Oncol 4(4):545–553. https://doi.org/10.1001/jamaoncol.2017.5524

Nielsen T, Wallden B, Schaper C, Ferree S, Liu SZ, Gao DX, Barry G, Dowidar N, Maysuria M, Storhoff J (2014) Analytical validation of the PAM50-based prosigna breast cancer prognostic gene signature assay and ncounter analysis system using formalin-fixed paraffin-embedded breast tumor specimens. BMC Cancer. https://doi.org/10.1186/1471-2407-14-177

Wallden B, Storhoff J, Nielsen T, Dowidar N, Schaper C, Ferree S, Liu SZ, Leung S, Geiss G, Snider J, Vickery T, Davies SR, Mardis ER, Gnant M, Sestak I, Ellis MJ, Perou CM, Bernard PS, Parker JS (2015) Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Med Genom. https://doi.org/10.1186/s12920-015-0129-6

Buffa FM, Harris AL, West CM, Miller CJ (2010) Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br J Cancer 102(2):428–435. https://doi.org/10.1038/sj.bjc.6605450

Hu Z, Fan C, Livasy C, He X, Oh DS, Ewend MG, Carey LA, Subramanian S, West R, Ikpatt F, Olopade OI, van de Rijn M, Perou CM (2009) A compact VEGF signature associated with distant metastases and poor outcomes. BMC Med 7:9. https://doi.org/10.1186/1741-7015-7-9

Tibshirani R (1997) The lasso method for variable selection in the Cox model. Stat Med 16(4):385–395

Colleoni M, Sun Z, Price KN, Karlsson P, Forbes JF, Thurlimann B, Gianni L, Castiglione M, Gelber RD, Coates AS, Goldhirsch A (2016) Annual hazard rates of recurrence for breast cancer during 24 years of follow-up: results from the international breast cancer study group trials I to V. J Clin Oncol 34(9):927–935. https://doi.org/10.1200/jco.2015.62.3504

Natarajan L, Pu MY, Parker BA, Thomson CA, Caan BJ, Flatt SW, Madlensky L, Hajek RA, Al-Delaimy WK, Saquib N, Gold EB, Pierce JP (2009) Time-varying effects of prognostic factors associated with disease-free survival in breast cancer. Am J Epidemiol 169(12):1463–1470. https://doi.org/10.1093/aje/kwp077

Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, Mackey J, Glaspy J, Chan A, Pawlicki M, Pinter T, Valero V, Liu MC, Sauter G, von Minckwitz G, Visco F, Bee V, Buyse M, Bendahmane B, Tabah-Fisch I, Lindsay MA, Riva A, Crown J (2011) Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 365(14):1273–1283. https://doi.org/10.1056/NEJMoa0910383

Bertucci F, Finetti P, Viens P, Birnbaum D (2014) EndoPredict predicts for the response to neoadjuvant chemotherapy in ER-positive, HER2-negative breast cancer. Cancer Lett 355(1):70–75. https://doi.org/10.1016/j.canlet.2014.09.014

Rakha EA, Agarwal D, Green AR, Ashankyty I, Ellis IO, Ball G, Alaskandarany MA (2017) Prognostic stratification of oestrogen receptor-positive HER2-negative lymph node-negative class of breast cancer. Histopathology 70(4):622–631. https://doi.org/10.1111/his.13108

Suman VJ, Ellis MJ, Ma CX (2015) The ALTERNATE trial: assessing a biomarker driven strategy for the treatment of post-menopausal women with ER +/Her2- invasive breast cancer. Chin Clin Oncol 4(3):34. https://doi.org/10.3978/j.issn.2304-3865.2015.09.01

Zanotti G, Hunger M, Perkins JJ, Horblyuk R, Martin M (2017) Treatment patterns and real world clinical outcomes in ER+/HER2− post-menopausal metastatic breast cancer patients in the United States. Bmc Cancer 17(1):393. https://doi.org/10.1186/s12885-017-3379-1

Pierce JP, Natarajan L, Caan BJ, Parker BA, Greenberg ER, Flatt SW, Rock CL, Kealey S, Al-Delaimy WK, Bardwell WA, Carlson RW, Emond JA, Faerber S, Gold EB, Hajek RA, Hollenbach K, Jones LA, Karanja N, Madlensky L, Marshall J, Newman VA, Ritenbaugh C, Thomson CA, Wasserman L, Stefanick ML (2007) Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer—the Women’s Healthy Eating and Living (WHEL) Randomized Trial. J Am Med Assoc 298(3):289–298. https://doi.org/10.1001/jama298.3.289

Natarajan L, Pu M, Davies SR, Vickery TL, Nelson SH, Pittman E, Parker BA, Ellis MJ, Flatt SW, Mardis ER, Marinac CR, Pierce JP, Messer K (2019) MiRNAs and long-term breast cancer survival: evidence from the WHEL Study. Cancer Epidemiol Biomark Prev. https://doi.org/10.1158/1055-9965.epi-18-1322

Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. https://doi.org/10.1186/bcr2635

Pierce JP, Faerber S, Wright FA, Rock CL, Newman V, Flatt SW, Kealey S, Jones VE, Caan BJ, Gold EB, Haan M, Hollenbach KA, Jones L, Marshall JR, Ritenbaugh C, Stefanick ML, Thomson C, Wasserman L, Natarajan L, Thomas RG, Gilpin EA (2002) A randomized trial of the effect of a plant-based dietary pattern on additional breast cancer events and survival: the Women’s Healthy Eating and Living (WHEL) Study. Control Clin Trials 23(6):728–756

AJCC (2002) American Joint Committee on Cancer: manual for staging of cancer, 6th edn. Spring-Verlag, New York

Zhao X, Rodland EA, Tibshirani R, Plevritis S (2015) Molecular subtyping for clinically defined breast cancer subgroups. Breast Cancer Res. https://doi.org/10.1186/s13058-015-0520-4

Therneau TM, Grambsch PM (2000) modeling survival data: extending the Cox model. Springer-Verlag, New York

R DCT (2009) The R project for statistical computing (freeware statistics package R)

Sestak I, Buus R, Cuzick J, Dudsky P, Kronenwett R, Ferree S, Sgroi D, Schnabel C, Baehner R, Mallon E, Dowsett M (2016) Comprehensive comparison of prognostic signatures for breast cancer recurrence in TransATAC. In: Paper presented at the San Antonio Breast Cancer Symposium, San Antonio, TX, Dec 6–10, 2016

Dias K, Dvorkin-Gheva A, Hallett RM, Wu Y, Hassell J, Pond GR, Levine M, Whelan T, Bane AL (2017) Claudin-low breast cancer; clinical & pathological characteristics. PLoS ONE 12(1):e0168669. https://doi.org/10.1371/journal.pone.0168669