Các tiến bộ nghiên cứu về sản xuất axit arachidonic bằng lên men và biến đổi gen của Mortierella alpina

Huidan Zhang1, Qiu Cui1, Xiaojin Song1
1CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China

Tóm tắt

Axit arachidonic (ARA, 5, 8, 11, 14-cis-eicosatetraenoic acid) là một axit béo không bão hòa đa ω-6 có vai trò quan trọng trong hệ miễn dịch, tim mạch và thần kinh của con người. ARA được ứng dụng rộng rãi trong y học, mỹ phẩm, dinh dưỡng và nhiều lĩnh vực khác. Truyền thống, ARA được thu hoạch từ mô động vật. Tuy nhiên, do các hạn chế và tính bền vững không cao của các nguồn tài nguyên hiện có, các sinh vật vi mô trở thành một nguồn tiềm năng thay thế cho sản xuất ARA. Trong bối cảnh này, đã có những nỗ lực chính trong việc nghiên cứu tảo và nấm sợi, trong đó Mortierella alpina là chủng vi sinh vật hiệu quả nhất cho việc sản xuất ARA trong công nghiệp. Trong bài tổng quan này, chúng tôi đã tóm tắt những tiến bộ gần đây trong việc tăng cường sản xuất M. alpina thông qua tối ưu hóa môi trường nuôi cấy, quá trình lên men và biến đổi gen. Ngoài ra, chúng tôi cũng cung cấp các triển vọng về các phương pháp và công nghệ sinh vi học để tăng cường sản xuất ARA hơn nữa.

Từ khóa

#Axit arachidonic #Mortierella alpina #sản xuất axit béo #sinh học tổng hợp #công nghệ lên men

Tài liệu tham khảo

Ando A, Sakuradani E, Horinaka K, Ogawa J, Shimizu S (2009a) Transformation of an oleaginous zygomycete Mortierella alpina 1S–4 with the carboxin resistance gene conferred by mutation of the iron-sulfur subunit of succinate dehydrogenase. Curr Genet 55:349–356. https://doi.org/10.1007/s00294-009-0250-1 Ando A, Sumida Y, Negoro H, Suroto DA, Ogawa J, Sakuradani E, Shimizu S (2009b) Establishment of Agrobacterium tumefaciens-mediated transformation of an oleaginous fungus, Mortierella alpina 1S–4, and its application for eicosapentaenoic acid producer breeding. Appl Environ Microbiol 75:5529–5535. https://doi.org/10.1128/AEM.00648-09 Béligon V, Christophe G, Fontanille P, Larroche C (2016) Microbial lipids as potential source to food supplements. Curr Opin Food Sci 7:35–42. https://doi.org/10.1016/j.cofs.2015.10.002 Bellou S, Triantaphyllidou IE, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G (2016) Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35. https://doi.org/10.1016/j.copbio.2015.09.005 Brenna JT (2016) Arachidonic acid needed in infant formula when docosahexaenoic acid is present. Nutr Rev 74:329–336. https://doi.org/10.1093/nutrit/nuw007 Burns JL, Nakamura MT, Ma DWL (2018) Differentiating the biological effects of linoleic acid from arachidonic acid in health and disease Prostaglandins. Leukot Essent Fatty Acids 135:1–4. https://doi.org/10.1016/j.plefa.2018.05.004 Carlson SE, Colombo J (2016) Docosahexaenoic acid and arachidonic acid nutrition in early development. Adv Pediatr 63:453–471. https://doi.org/10.1016/j.yapd.2016.04.011 Dedyukhina EG, Chistyakova TI, Mironov AA, Kamzolova SV, Minkevich IG, Vainshtein MB (2015) The effect of pH, aeration, and temperature on arachidonic acid synthesis by Mortierella alpina. Appl Biochem Micro 51:242–248. https://doi.org/10.1134/s0003683815020040 Diao J, Song X, Guo T, Wang F, Chen L, Zhang W (2020) Cellular engineering strategies toward sustainable omega-3 long chain polyunsaturated fatty acids production: State of the art and perspectives. Biotechnol Adv 40:107497. https://doi.org/10.1016/j.biotechadv.2019.107497 Eroshin VK, Satroutdinov AD, Dedyukhina EG, Chistyakova TI (2000) Arachidonic acid production by Mortierella alpina with growth-coupled lipid synthesis. Process Biochem 35:1171–1175. https://doi.org/10.1016/S0032-9592(00)00151-5 Fu Y, Liu X, Zhou B, Jiang AC, Chai L (2016) An updated review of worldwide levels of docosahexaenoic and arachidonic acid in human breast milk by region. Public Health Nutr 19:2675–2687. https://doi.org/10.1017/S1368980016000707 Hadley KB, Ryan AS, Forsyth S, Gautier S, Salem N Jr (2016) The essentiality of arachidonic acid in infant development. Nutrients 8:216. https://doi.org/10.3390/nu8040216 Hao G et al (2014) Role of malic enzyme during fatty acid synthesis in the oleaginous fungus Mortierella alpina. Appl Environ Microbiol 80:2672–2678. https://doi.org/10.1128/AEM.00140-14 Hao G, Chen H, Gu Z, Zhang H, Chen W, Chen YQ, Cullen D (2016) Metabolic engineering of Mortierella alpina for enhanced arachidonic acid production through the NADPH-supplying strategy. Appl Environ Microb 82:3280–3288. https://doi.org/10.1128/aem.00572-16 Harwood JL, Guschina IA (2009) The versatility of algae and their lipid metabolism. Biochimie 91:679–684. https://doi.org/10.1016/j.biochi.2008.11.004 Hayashi S, Naka M, Ikeuchi K, Ohtsuka M, Kobayashi K, Satoh Y et al (2019) Control mechanism for carbon-chain length in polyunsaturated fatty-acid synthases. Angew Chem Int Ed Engl 58:6605–6610 Ho S-Y, Chen F (2008) Lipid characterization of Mortierella alpina grown at different NaCl concentrations. J Agr Food Chem 56:7903–7909. https://doi.org/10.1021/jf801404y Hosoya S, Arunpairojana V, Suwannachart C, Kanjana-Opas A, Yokota A (2006) Aureispira marina gen. nov., sp. nov., a gliding, arachidonic acid-containing bacterium isolated from the southern coastline of Thailand. Int J Syst Evol Microbiol 56:2931–2935 Huang M et al (2020) Two-stage pH control combined with oxygen-enriched air strategies for the highly efficient production of EPA by Mortierella alpina CCFM698 with fed-batch fermentation. Bioprocess Biosyst Eng 43:1725–1733. https://doi.org/10.1007/s00449-020-02367-9 Hwang BH, Kim JW, Park CY, Park CS, Kim YS, Ryu YW (2005) High-level production of arachidonic acid by fed-batch culture of Mortierella alpina using NH4OH as a nitrogen source and pH control. Biotechnol Lett 27:731–735. https://doi.org/10.1007/s10529-005-5362-1 Ji XJ, Zhang AH, Nie ZK, Wu WJ, Ren LJ, Huang H (2014) Efficient arachidonic acid-rich oil production by Mortierella alpina through a repeated fed-batch fermentation strategy. Bioresour Technol 170:356–360. https://doi.org/10.1016/j.biortech.2014.07.098 Jin MJ, Huang H, Xiao AH, Gao Z, Liu X, Peng C (2009) Enhancing arachidonic acid production by Mortierella alpina ME-1 using improved mycelium aging technology. Bioprocess Biosyst Eng 32:117–122. https://doi.org/10.1007/s00449-008-0229-1 Kawashima H (2019) Intake of arachidonic acid-containing lipids in adult humans: dietary surveys and clinical trials. Lipids Health Dis 18:101. https://doi.org/10.1186/s12944-019-1039-y Kenichi Higashiyama SF, Park EY, Shimizu S (2002) Production of arachidonic acid by Mortierella fungi. Biotechnol Bioprocess Eng 7:252–262 Kikukawa H, Sakuradani E, Ando A, Okuda T, Ochiai M, Shimizu S, Ogawa J (2015) Disruption of lig4 improves gene targeting efficiency in the oleaginous fungus Mortierella alpina 1S–4. J Biotechnol 208:63–69. https://doi.org/10.1016/j.jbiotec.2015.05.020 Kikukawa H, Sakuradani E, Ando A, Shimizu S, Ogawa J (2018) Arachidonic acid production by the oleaginous fungus Mortierella alpina 1S–4: a review. J Adv Res 11:15–22. https://doi.org/10.1016/j.jare.2018.02.003 Koike Y, Cai HJ, Higashiyama K, Fujikawa S, Park EY (2001) Effect of consumed carbon to nitrogen ratio of mycelial morphology and arachidonic acid production in cultures of Mortierella alpina. J Biosci Bioeng 91:382–389 Koizumi K, Higashiyama K, Park EY (2006) Effects of amino acid on morphological development and nucleus formation of arachidonic acid-producing filamentous micro-organism, Mortierella alpina. J Appl Microbiol 100:885–892. https://doi.org/10.1111/j.1365-2672.2005.02820.x Levering J, Broddrick J, Zengler K (2015) Engineering of oleaginous organisms for lipid production. Curr Opin Biotechnol 36:32–39. https://doi.org/10.1016/j.copbio.2015.08.001 Li X, Lin Y, Chang M, Jin Q, Wang X (2015a) Efficient production of arachidonic acid by Mortierella alpina through integrating fed-batch culture with a two-stage pH control strategy. Bioresour Technol 181:275–282. https://doi.org/10.1016/j.biortech.2015.01.009 Li X, Liu R, Li J, Chang M, Liu Y, Jin Q, Wang X (2015b) Enhanced arachidonic acid production from Mortierella alpina combining atmospheric and room temperature plasma (ARTP) and diethyl sulfate treatments. Bioresour Technol 177:134–140. https://doi.org/10.1016/j.biortech.2014.11.051 Liang MH, Jiang JG (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395–408. https://doi.org/10.1016/j.plipres.2013.05.002 Lu J, Peng C, Ji XJ, You J, Cong L, Ouyang P, Huang H (2011) Fermentation characteristics of Mortierella alpina in response to different nitrogen sources. Appl Biochem Biotechnol 164:979–990. https://doi.org/10.1007/s12010-011-9189-z Mackenzie D, Wongwathanarat P, Carte A, Archer D (2000) Isolation and use of a homologous histone H4 promoter and a ribosomal DNA region in a transformation vector for the oil-producing fungus Mortierella alpina. Appl Environ Microbiol 66:4655–4661 Malaiwong N, Yongmanitchai W, Chonudomkul D (2016) Optimization of arachidonic acid production from Mortierella alpina PRAO7-10 by response surface methodology. Agric Nat Resour 50:162–172. https://doi.org/10.1016/j.anres.2016.06.003 Mamani LDG, Magalhães AI, Ruan Z, Carvalho JCd, Soccol CR (2019) Industrial production, patent landscape, and market trends of arachidonic acid-rich oil of Mortierella alpina. Biotechnol Res Innov 3:103–119. https://doi.org/10.1016/j.biori.2019.02.002 Martin SA, Brash AR, Murphy RC (2016) The discovery and early structural studies of arachidonic acid. J Lipid Res 57:1126–1132. https://doi.org/10.1194/jlr.R068072 Meng H, Liu Y, Lai L (2015) Diverse ways of perturbing the human arachidonic acid metabolic network to control inflammation. Acc Chem Res 48:2242–2250. https://doi.org/10.1021/acs.accounts.5b00226 Nakamura H, Murayama T (2014) The role of sphingolipids in arachidonic acid metabolism. J Pharmacol Sci 124:307–312. https://doi.org/10.1254/jphs.13R18CP Nie ZK, Ji XJ, Shang JS, Zhang AH, Ren LJ, Huang H (2014) Arachidonic acid-rich oil production by Mortierella alpina with different gas distributors. Bioprocess Biosyst Eng 37:1127–1132. https://doi.org/10.1007/s00449-013-1104-2 Nisha A, Venkateswaran G (2011) Effect of culture variables on mycelial arachidonic acid production by Mortierella alpina. Food Bioprocess Technol 4:232–240. https://doi.org/10.1007/s11947-008-0146-y O’Conner DL, Hall R, Adamkin D, Austad N, Castillo M, Conner WE, Conner SJ (2001) Growth and development in preterm infants fed long-chain polyunsaturated fatty acids. A prospective randomized controlled trial. Pediatrics 108(2):359–371 Okuda T et al (2014) Selection and characterization of promoters based on genomic approach for the molecular breeding of oleaginous fungus Mortierella alpina 1S–4. Curr Genet 60:183–191. https://doi.org/10.1007/s00294-014-0423-4 Okuda T et al (2014) Characterization of galactose-dependent promoters from an oleaginous fungus Mortierella alpina 1S–4. Curr Genet 60:175–182. https://doi.org/10.1007/s00294-014-0422-5 Peng C et al (2010) A temperature-shift strategy for efficient arachidonic acid fermentation by Mortierella alpina in batch culture. Biochem Eng J 53:92–96. https://doi.org/10.1016/j.bej.2010.09.014 Qiu X, Xie X, Meesapyodsuk D (2020) Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog Lipid Res 79:101047. https://doi.org/10.1016/j.plipres.2020.101047 Ratledge C (2014) The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnol Lett 36(8):1557–1568. https://doi.org/10.1007/s10529-014-1532-3 Raychaudhuri S, Young BP, Espenshade PJ, Loewen C Jr (2012) Regulation of lipid metabolism: a tale of two yeasts. Curr Opin Cell Biol 24:502–508. https://doi.org/10.1016/j.ceb.2012.05.006 Richard C, Lewis ED, Field CJ (2016) Evidence for the essentiality of arachidonic and docosahexaenoic acid in the postnatal maternal and infant diet for the development of the infant’s immune system early in life. Appl Physiol Nutr Metab 41:461–475. https://doi.org/10.1139/apnm-2015-0660 Šajbidor J, Koželouhov’a D, Ĉert’ik M (1992) Influence of some metal ions on the lipid content and arachidonic acid production by Mortierella sp. Folia Microbiol 37:404–406. https://doi.org/10.1007/BF02899897 Sakuradani E (2010) Advances in the production of various polyunsaturated fatty acids through Oleaginous Fungus Mortierella alpina breeding. Biosci Biotechnol Biochem 74:908–917. https://doi.org/10.1271/bbb.100001 Sakuradani E, Shimizu S (2009) Single cell oil production by Mortierella alpina. J Biotechnol 144:31–36. https://doi.org/10.1016/j.jbiotec.2009.04.012 Shanab SMM, Hafez RM, Fouad AS (2018) A review on algae and plants as potential source of arachidonic acid. J Adv Res 11:3–13. https://doi.org/10.1016/j.jare.2018.03.004 Sonnweber T, Pizzini A, Nairz M, Weiss G, Tancevski I (2018) Arachidonic acid metabolites in cardiovascular and metabolic diseases. Int J Mol Sci. https://doi.org/10.3390/ijms19113285 Takeno S, Sakuradani E, Murata S, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2004a) Cloning and sequencing of the ura3 and ura5 genes, and isolation and characterization of uracil auxotrophs of the fungus Mortierella alpina 1S–4. Biosci Biotechnol Biochem 68:277–285. https://doi.org/10.1271/bbb.68.277 Takeno S, Sakuradani E, Murata S, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2004b) Establishment of an overall transformation system for an oil-producing filamentous fungus, Mortierella alpina 1S–4. Appl Microbiol Biotechnol 65:419–425. https://doi.org/10.1007/s00253-004-1622-6 Takeno S, Sakuradani E, Tomi A, Inohara-Ochiai M, Kawashima H, Shimizu S (2005) Transformation of oil-producing fungus, Mortierella alpina 1S–4, using zeocin, and application to arachidonic acid production. J Biosci Bioeng 100:617–622. https://doi.org/10.1263/jbb.100.617 Wang H et al (2016) Role of dihydrofolate reductase in tetrahydrobiopterin biosynthesis and lipid metabolism in the oleaginous fungus Mortierella alpina. Microbiology (Reading) 162:1544–1553. https://doi.org/10.1099/mic.0.000345 Wang Y, Tang X, Wang S, Zhang H, Chen YQ, Chen H, Chen W (2020) Application of the cbh1 promoter in Mortierella alpina and optimization of induction conditions. Lett Appl Microbiol 71:164–170. https://doi.org/10.1111/lam.13300 Wu WJ et al (2015) Lipid characterization of an arachidonic acid-rich oil producing fungus Mortierella alpina. Chin J Chem Eng 23:1183–1187. https://doi.org/10.1016/j.cjche.2015.04.015 Wu WJ et al (2017) An efficient multi-stage fermentation strategy for the production of microbial oil rich in arachidonic acid in Mortierella alpina. Bioresour Bioprocess 4:8. https://doi.org/10.1186/s40643-017-0138-8 Yarla NS et al (2016) Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol 40–41:48–81. https://doi.org/10.1016/j.semcancer.2016.02.001 You JY et al (2011) Enzymatic hydrolysis and extraction of arachidonic acid rich lipids from Mortierella alpina. Bioresour Technol 102:6088–6094. https://doi.org/10.1016/j.biortech.2011.01.074 Yu AQ, Zhu JC, Zhang B, Xing LJ, Li M (2011) Effects of different carbon sources on the growth, fatty acids production, and expression of three desaturase genes of Mortierella alpina ATCC 16266. Curr Microbiol 62:1617–1622. https://doi.org/10.1007/s00284-011-9902-8 Yu Y, Li T, Wu N, Jiang L, Ji X, Huang H (2017) The role of lipid droplets in Mortierella alpina aging revealed by integrative subcellular and whole-cell proteome analysis. Sci Rep 7:43896. https://doi.org/10.1038/srep43896 Yu Y, Zhang L, Li T, Wu N, Jiang L, Ji X, Huang H (2018) How nitrogen sources influence Mortierella alpina aging: From the lipid droplet proteome to the whole-cell proteome and metabolome. J Proteomics 179:140–149. https://doi.org/10.1016/j.jprot.2018.03.014 Zhang H, Feng Y, Cui Q, Song X (2017) Expression of Vitreoscilla hemoglobin enhances production of arachidonic acid and lipids in Mortierella alpina. BMC Biotechnol 17:68. https://doi.org/10.1186/s12896-017-0388-8 Zhang H, Lu D, Li X, Feng Y, Cui Q, Song X (2018) Heavy ion mutagenesis combined with triclosan screening provides a new strategy for improving the arachidonic acid yield in Mortierella alpina. BMC Biotechnol 18:23. https://doi.org/10.1186/s12896-018-0437-y Zhang H, Wang Z, Feng Y, Cui Q, Song X (2019) Phytohormones as stimulators to improve arachidonic acid biosynthesis in Mortierella alpina. Enzyme Microb Technol 131:109381. https://doi.org/10.1016/j.enzmictec.2019.109381 Zorn K, Oroz-Guinea I, Brundiek H, Bornscheuer UT (2016) Engineering and application of enzymes for lipid modification, an update. Prog Lipid Res 63:153–164. https://doi.org/10.1016/j.plipres.2016.06.001