Research Strategies for Safety Evaluation of Nanomaterials. Part VI. Characterization of Nanoscale Particles for Toxicological Evaluation

Toxicological Sciences - Tập 90 Số 2 - Trang 296-303 - 2006
Kevin Powers1,2, David B. Warheit1,2, Vijay Krishna1,2, Scott Wasdo3,4, Brij M. Moudgil1,2, Stephen M. Roberts3,4
1Particle Engineering Research Center, University of Florida, Gainesville, Florida 32611; †Department of Materials Science and Engineering,
2University of Florida, Gainesville, Florida, 32611
3Center for Environ-mental & Human Toxicology, University of Florida, P.O. Box 110885, Gainesville, FL 32611-0885.
4‡Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adamson, A. W., and Gast, A. P. (1997). Physical Chemistry of Surfaces. Wiley, New York.

Allen, T. (2004a). Particle Size Measurement, Vol I: Powder Sampling and Particle Size Measurement, 5th Ed., London, Chapman & Hall.

Allen, T. (2004b). Particle Size Measurement, Vol II: Surface Area and Pore Size Determination, 5th Ed., London, Chapman & Hall.

Bootz, A., Russ, T., Gores, F., Karas, M., and Kreuter, J. (2005). Molecular weights of poly(butyl cyanoacrylate) nanoparticles determined by mass spectrometry and size exclusion chromatography. Eur. J. Pharm. Biopharm.60,391–399.

Bootz, A., Vogel, V., Schubert, D., and Kreuter, J. (2004). Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm.57,369–375.

Bozzola, J. J., and Russell, L. D. (1992). Specimen staining and contrast methods for transmission electron microscopy. In: Bozzola JJ, Russell LD, editors, Electron Microscopy. Principles and Techniques for Biologists, vol 5. Jones and Bartlett Publishers, Boston, pp. 117–118.

Brown, D. M., Wilson, M. R., MacNee, W., Stone, V., and Donaldson, K. (2001). Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol.175,191–199.

BSI PAS 71:25. (2005). Vocabulary–Nanoparticles. Department of Trade and Industry and British Standards Institution, United Kingdom.

Bucher, J., Masten S., Moudgil B., Powers K., Roberts S., and Walker N. (2004), Developing Experimental Approaches for the Evaluation of Toxicological Interactions of Nanoscale Materials. Final Workshop Report 3–4 November, 2004, 1–37; University of Florida, Gainesville, FL. www.nanotoxicology.ufl.edu.

Burtscher, H. (2005). Physical characterization of particulate emissions from diesel engines: A review. J. Aerosol. Sci.36,896–932.

Chakraborty, B. R., Haranath, D., Chander, H., Hellweg, S., Dambach, S., and Arlinghaus, H. F. (2005). TOF-SIMS and laser-SNMS investigations of dopant distribution in nanophosphors. Nanotechnology16,1006–1015.

Donaldson, K., Li, X. Y., and MacNee, W. (1998). Ultrafine (nanometer) particle mediated lung injury. J. Aerosol. Sci.29,553–560.

Donaldson, K., Brown, D., Clouter, A., Duffin, R., MacNee, W., Renwick, L., Tran, L., and Stone, V. (2002). The pulmonary toxicology of ultrafine particles. J. Aerosol. Med.15,213–220.

Duffin, R., Gilmour, P. S., Schins, R. P., Clouter, A., Guy, K., Brown, D. M., MacNee, W., Borm, P. J., Donaldson, K., and Stone, V. (2001). Aluminium lactate treatment of DQ12 quartz inhibits its ability to cause inflammation, chemokine expression, and nuclear factor-kappaB activation. Toxicol. Appl. Pharmacol.176,10–17.

Dukhin, A. S., Shilov, V. N., Ohshima, H., and Goetz, P. J. (1999). Electroacoustic phenomena in concentrated dispersions: New theory and CVI experiment. Langmuir15,6692–6706.

Fritz, H., Maier, M., and Bayer, E. (1997). Cationic polystyrene nanoparticles: preparation and characterization of a model drug carrier system for antisense oligonucleotides. J. Colloid Interface Sci.195,272–288.

Guo, J. (2004). Synchrotron radiation, soft-x-ray spectroscopy and nanomaterials. International J Nanotechnology1,193–225.

Hood E. (2004). Nanotechnology: Looking as we leap. Environ. Health Perspect.112,A740–A749.

ISO 9276 (2003). Representation of results of particle size analysis, Parts 1–3, ISO TC24/SC4, International Standards Organization Publication.

Jarvis, P., Jefferson, B., Gregory, J., and Parsons, S. A. (2005). A review of floc strength and breakage. Water Res.39,3121–3137.

Jiang, X., Jiang, J., Jin, Y., Wang, E., and Dong, S. (2005). Effect of colloidal gold size on the conformational changes of adsorbed cytochrome c: Probing by circular dichroism, UV-visible, and infrared spectroscopy. Biomacromolecules6,46–53.

Jillavenkatesa, A., and Kelly, J. F. (2002). Nanopowder characterization: challenges and future directions. J. Nanopart. Res.4,463–468.

Kim, S. H., Jeong, J. H., Chun, K. W., and Park, T. G. (2005). Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir21,8852–8857.

Lowell, S., Shields, J. E., Thomas, M. A., and Thommes, M. (2004). Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Particle Technology Series, Springer, New York.

Masuda, H. I. K. (1971). Theoretical study of the scatter of experimental data due to particle size distribution. J. Chem. Eng. Jpn.4,60–67.

Maynard, A. (2003). Estimating aerosol surface area from number and mass concentration measurements. Ann. Occup. Hyg.47,123–144.

Mueller, W. G., Walker, D., Hager, G. L., and McNally, J. G. (2001). Large-scale chromatin decondensation and recondensation regulated by transcription from a natural promoter. Mol. Biol. Cell12,357a–357a.

NIST 960-1. (2001). NIST Recommended Practice Guide, Particle Size Characterization, National Institute of Standards, USA.

NIST 960-3, (2001). NIST Recommended Practice Guide, The Use of Nomenclature in Dispersion Science and Technology, National Institute of Standards, USA.

NNIN (2005). The National Nanotechnology Infrastructure Network (NNIN) c/o CNF, 250 Duffield Hall, Cornell University, Ithaca New York 14853, (607) 255-2329, http://www.cnf.cornell.edu.

NCI (2005). NIH Publication No. 05-5633, Nanotechnology Characterization Laboratory.

Neumann, A. W., and Spelt, J. K. (1996). Applied Surface Thermodynamics. Marcel Dekker, New York.

Oberdorster, G., Ferin, J., Gelein, R., Soderholm, S. C., and Finkelstein, J. (1992). Role of the alveolar macrophage in lung injury-studies with ultrafine particles. Environ. Health Perspect.97,193–199.

Oberdorster, G., Oberdorster, E., and Oberdorster, J. (2005a). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect.113,823–839.

Oberdorster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman K., Carter, J., Karn, B., Kreyling, W., Lai, D., et al. (2005b). Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Particle Fibre Toxicol. (doi:10.1186/1743–8977-2-82:8).

Park, S. H., Oh, S. G., Mun, J. Y., and Han, S. S. (2005). Effects of silver nanoparticles on the fluidity of bilayer in phospholipid liposome. Colloid Surface B44,117–122.

Ratner, B. D. (1996). Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, San Diego.

Roco, M. C., (2001). International strategy for nanotechnology research and development. J Nanoparticle Res.3,353–360.

The Royal Society. (2004). Nanoscience and nanotechnologies: Opportunities and uncertainties. RS Policy document 19/04.

Sjostrom, B., Kaplun, A., Talmon, Y., and Cabane, B. (1995). Structures of nanoparticles prepared from oil–in-water emulsions. Pharm. Res.12,39–48.

Tran, C. L., Buchanan, D., Cullen, R. T., Searl, A., Jones, A. D., and Donaldson, K. (2000). Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhalat. Toxicol.12,1113–1126.

Unterhalt, H., Rupprechter, G., and Freund, H. J. (2002). Vibrational sum frequency spectroscopy on Pd(111) and supported Pd nanoparticles: CO adsorption from ultrahigh vacuum to atmospheric pressure. J. Phys. Chem. B106,356–367.

Vertegel, A. A., Siegel, R. W., and Dordick, J. S. (2004). Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir20,6800–6807.

Warheit, D. B., Brock, W. J., Lee, K. P., Webb, T. R. and Reed, K. L., (2005). Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: Impact of surface treatments on particle toxicity. Toxicol. Sci.88,514–524.

Webb, P., and Orr, C. (1997). Analytical Methods in Fine Particle Technology, Micromeritics Instrument Corp., Norcross GA.

Williams, D., and Carter, C. (1996). Transmission Electron Microscopy, Volumes 1–4, Plenum Press, New York.

Zhang, H., Gilbert, B., Huang, F., and Banfield, J. F. (2003). Water-driven structure transformation in nanoparticles at room temperature. Nature424,1025–1029.