Requirement of chemotaxis and aerotaxis in host tobacco infection by Pseudomonas syringae pv. tabaci 6605

Physiological and Molecular Plant Pathology - Tập 124 - Trang 101970 - 2023
Yuki Ichinose1, Yuta Watanabe1, Stephany Angelia Tumewu1, Hidenori Matsui1, Mikihiro Yamamoto1, Yoshiteru Noutoshi1, Kazuhiro Toyoda1
1The Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 00-8530, Japan

Tài liệu tham khảo

Alexander, 2007, Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors, Proc. Natl. Acad. Sci. USA, 104, 2885, 10.1073/pnas.0609359104 Antunez-Lamaz, 2009, Bacterial chemoattraction towards jasmonate plays a role in the entry of Dickeya dadantii through wounded tissues, Mol. Microbiol., 74, 662, 10.1111/j.1365-2958.2009.06888.x Borziak, 2007, FIST: a sensory domain for diverse signal transduction pathways in prokaryotes and ubiquitin signaling in eukaryotes, Bioinfomatics, 23, 2518, 10.1093/bioinformatics/btm384 Cerna-Vargas, 2019, Chemoperception of specific amino acids controls phytopathogenicity in Pseudomonas syringae pv. tomato, mBio, 10, 10.1128/mBio.01868-19 Clarke, 2016, Comparative genomics of Pseudomonas syringae pathovar tomato reveals novel chemotaxis pathway associated with motility and plant pathogenicity, PeerJ, 4, 10.7717/peerj.2570 Edwards, 2006, Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis, Mol. Microbiol., 62, 823, 10.1111/j.1365-2958.2006.05411.x Ferrández, 2002, Cluster II che genes from Pseudomonas aeruginosa are required for an optimal chemotactic response, J. Bacteriol., 184, 4374, 10.1128/JB.184.16.4374-4383.2002 García-Fontana, 2014, Specificity of the CheR2 methyltransferase in Pseudomonas aeruginosa is directed by a C-terminal pentapeptide in the McpB chemoreceptor, Sci. Signal., 7, ra34, 10.1126/scisignal.2004849 Henry, 2011, Ligand-binding PAS domains in a genomic, cellular, and structural context, Annu. Rev. Microbiol., 65, 261, 10.1146/annurev-micro-121809-151631 Hong, 2004, Chemotaxis proteins and transducers for aerotaxis in Pseudomonas aeruginosa, FEMS Microbiol. Lett., 231, 247, 10.1016/S0378-1097(04)00009-6 Ichinose, 2003, Need for flagella for complete virulence of Pseudomonas syringae pv. tabaci: genetic analysis with flagella-defective mutants ΔfliC and ΔfliD in host tobacco plants, J. Gen. Plant Pathol., 69, 244, 10.1007/s10327-003-0045-z Ichinose, 2016, Motility-mediated regulation of virulence in Pseudomonas syringae, Physiol. Mol. Plant Pathol., 95, 50, 10.1016/j.pmpp.2016.02.005 Ichinose, 2020, Role of two sets of RND-type multidrug efflux pump transporter genes, mexAB-oprM and mexEF-oprN, in virulence of Pseudomonas syringae pv. tabaci 6605, Plant Pathol. J., 36, 148, 10.5423/PPJ.OA.11.2019.0273 Kanda, 2011, Two flagellar stators and their roles in motility and virulence in Pseudomonas syringae pv. tabaci 6605, Mol. Genet. Genom., 285, 163, 10.1007/s00438-010-0594-8 Kroupitski, 2009, Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata, Appl. Environ. Microbiol., 75, 6076, 10.1128/AEM.01084-09 Lacal, 2010, Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions, Environ. Microbiol., 12, 2873, 10.1111/j.1462-2920.2010.02325.x Martin-Mora, 2019, The molecular mechanism of nitrate chemotaxis via direct ligand binding to the PilJ domain of McpN, mBio, 10, 10.1128/mBio.02334-18 Matilla, 2018, The effect of bacterial chemotaxis on host infection and pathogenicity, FEMS Microbiol. Rev., 42, 40, 10.1093/femsre/fux052 Matilla, 2021, Pseudomonas aeruginosa as a model to study chemosensory pathway signaling, Microbiol. Mol. Biol. Rev., 85, 10.1128/MMBR.00151-20 Matsui, 2021, Complete genome sequence of Pseudomonas amygdali pv. tabaci strain 6605, a causal agent of tobacco wildfire disease, Microbiol. Resour. Announ., 10, e00405, 10.1128/MRA.00405-21 Melotto, 2006, Plant stomata function in innate immunity against bacterial invasion, Cell, 126, 969, 10.1016/j.cell.2006.06.054 Reyes-Darias, 2015, Specific gamma-aminobutyrate chemotaxis in pseudomonads with different lifestyle, Mol. Microbiol., 97, 488, 10.1111/mmi.13045 Ortega, 2014, The HBM domain: introducing bimodularity to bacterial sensing Protein, Science, 23, 332 Ortega, 2020, T Krell, Chemoreceptors with C-terminal pentapeptides for CheR and CheB binding are abundant in bacteria that maintain host interactions, Comput. Struct. Biotechnol. J., 18, 1947, 10.1016/j.csbj.2020.07.006 Ortega, 2017, Assigning chemoreceptors to chemosensory pathways in Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. USA, 114, 12809, 10.1073/pnas.1708842114 Parkinson, 2010, Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases, Annu. Rev. Microbiol., 64, 101, 10.1146/annurev.micro.112408.134215 Rico-Jimenez, 2022, A bacterial chemoreceptor that mediates chemotaxi to two different plant hormones, Environ. Microbiol., 24, 3580, 10.1111/1462-2920.15920 Sampedro, 2015, Pseudomonas chemotaxis, FEMS Microbiol. Rev., 39, 17 Santamaría-Hernando, 2022, Pseudomonas syringae pv. tomato infection of tomato plants is mediated by GABA and L-Pro chemoperception, Mol. Plant Pathol., 23, 1433, 10.1111/mpp.13238 Shu, 2003, The NIT domain: a predicted nitrate-responsive module in bacterial sensory receptors, Trends Biochem. Sci., 28, 121, 10.1016/S0968-0004(03)00032-X Taguchi, 2006, Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv, tabaci. Cell. Microbiol., 8, 923, 10.1111/j.1462-5822.2005.00674.x Tumewu, 2020, Requirement of γ-aminobutyric acid chemotaxis for virulence of Pseudomonas syringae pv. tabaci 6605, Microb. Environ., 35, 10.1264/jsme2.ME20114 Tumewu, 2021, Identification of chemoreceptor proteins for amino acids involved in host plant infection in Pseudomonas syringae pv. tabaci 6605, Microbiol. Res., 253, 10.1016/j.micres.2021.126869 Tumewu, 2022, Identification of aerotaxis receptor proteins involved in host plant infection by Pseudomonas syringae pv. tabaci 6605, Microb. Environ., 37, 10.1264/jsme2.ME21076 Tumewu, 2021, Cluster II che genes of Pseudomonas syringae pv. tabaci 6605, orthologs of cluster I in Pseudomonas aeruginosa, are required for chemotaxis and virulence, Mol. Genet. Genom., 296, 299, 10.1007/s00438-020-01745-y Ud-Din, 2017, Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea, Cell. Mol. Life Sci., 74, 3293, 10.1007/s00018-017-2514-0 Ulrich, 2005, Four-helix bundle: a ubiquitous sensory module in prokaryotic signal transduction, Bioinformatics, 21, 10.1093/bioinformatics/bti1204 Yao, 2006, Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum, J. Bacteriol., 188, 3697, 10.1128/JB.188.10.3697-3708.2006 Yao, 2007, The plant pathogen Ralstonia solanacearum needs aerotaxis for normal biofilm formation and interactions with its tomato host, J. Bacteriol., 189, 6415, 10.1128/JB.00398-07