Requirement of chemotaxis and aerotaxis in host tobacco infection by Pseudomonas syringae pv. tabaci 6605
Tài liệu tham khảo
Alexander, 2007, Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors, Proc. Natl. Acad. Sci. USA, 104, 2885, 10.1073/pnas.0609359104
Antunez-Lamaz, 2009, Bacterial chemoattraction towards jasmonate plays a role in the entry of Dickeya dadantii through wounded tissues, Mol. Microbiol., 74, 662, 10.1111/j.1365-2958.2009.06888.x
Borziak, 2007, FIST: a sensory domain for diverse signal transduction pathways in prokaryotes and ubiquitin signaling in eukaryotes, Bioinfomatics, 23, 2518, 10.1093/bioinformatics/btm384
Cerna-Vargas, 2019, Chemoperception of specific amino acids controls phytopathogenicity in Pseudomonas syringae pv. tomato, mBio, 10, 10.1128/mBio.01868-19
Clarke, 2016, Comparative genomics of Pseudomonas syringae pathovar tomato reveals novel chemotaxis pathway associated with motility and plant pathogenicity, PeerJ, 4, 10.7717/peerj.2570
Edwards, 2006, Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis, Mol. Microbiol., 62, 823, 10.1111/j.1365-2958.2006.05411.x
Ferrández, 2002, Cluster II che genes from Pseudomonas aeruginosa are required for an optimal chemotactic response, J. Bacteriol., 184, 4374, 10.1128/JB.184.16.4374-4383.2002
García-Fontana, 2014, Specificity of the CheR2 methyltransferase in Pseudomonas aeruginosa is directed by a C-terminal pentapeptide in the McpB chemoreceptor, Sci. Signal., 7, ra34, 10.1126/scisignal.2004849
Henry, 2011, Ligand-binding PAS domains in a genomic, cellular, and structural context, Annu. Rev. Microbiol., 65, 261, 10.1146/annurev-micro-121809-151631
Hong, 2004, Chemotaxis proteins and transducers for aerotaxis in Pseudomonas aeruginosa, FEMS Microbiol. Lett., 231, 247, 10.1016/S0378-1097(04)00009-6
Ichinose, 2003, Need for flagella for complete virulence of Pseudomonas syringae pv. tabaci: genetic analysis with flagella-defective mutants ΔfliC and ΔfliD in host tobacco plants, J. Gen. Plant Pathol., 69, 244, 10.1007/s10327-003-0045-z
Ichinose, 2016, Motility-mediated regulation of virulence in Pseudomonas syringae, Physiol. Mol. Plant Pathol., 95, 50, 10.1016/j.pmpp.2016.02.005
Ichinose, 2020, Role of two sets of RND-type multidrug efflux pump transporter genes, mexAB-oprM and mexEF-oprN, in virulence of Pseudomonas syringae pv. tabaci 6605, Plant Pathol. J., 36, 148, 10.5423/PPJ.OA.11.2019.0273
Kanda, 2011, Two flagellar stators and their roles in motility and virulence in Pseudomonas syringae pv. tabaci 6605, Mol. Genet. Genom., 285, 163, 10.1007/s00438-010-0594-8
Kroupitski, 2009, Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata, Appl. Environ. Microbiol., 75, 6076, 10.1128/AEM.01084-09
Lacal, 2010, Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions, Environ. Microbiol., 12, 2873, 10.1111/j.1462-2920.2010.02325.x
Martin-Mora, 2019, The molecular mechanism of nitrate chemotaxis via direct ligand binding to the PilJ domain of McpN, mBio, 10, 10.1128/mBio.02334-18
Matilla, 2018, The effect of bacterial chemotaxis on host infection and pathogenicity, FEMS Microbiol. Rev., 42, 40, 10.1093/femsre/fux052
Matilla, 2021, Pseudomonas aeruginosa as a model to study chemosensory pathway signaling, Microbiol. Mol. Biol. Rev., 85, 10.1128/MMBR.00151-20
Matsui, 2021, Complete genome sequence of Pseudomonas amygdali pv. tabaci strain 6605, a causal agent of tobacco wildfire disease, Microbiol. Resour. Announ., 10, e00405, 10.1128/MRA.00405-21
Melotto, 2006, Plant stomata function in innate immunity against bacterial invasion, Cell, 126, 969, 10.1016/j.cell.2006.06.054
Reyes-Darias, 2015, Specific gamma-aminobutyrate chemotaxis in pseudomonads with different lifestyle, Mol. Microbiol., 97, 488, 10.1111/mmi.13045
Ortega, 2014, The HBM domain: introducing bimodularity to bacterial sensing Protein, Science, 23, 332
Ortega, 2020, T Krell, Chemoreceptors with C-terminal pentapeptides for CheR and CheB binding are abundant in bacteria that maintain host interactions, Comput. Struct. Biotechnol. J., 18, 1947, 10.1016/j.csbj.2020.07.006
Ortega, 2017, Assigning chemoreceptors to chemosensory pathways in Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. USA, 114, 12809, 10.1073/pnas.1708842114
Parkinson, 2010, Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases, Annu. Rev. Microbiol., 64, 101, 10.1146/annurev.micro.112408.134215
Rico-Jimenez, 2022, A bacterial chemoreceptor that mediates chemotaxi to two different plant hormones, Environ. Microbiol., 24, 3580, 10.1111/1462-2920.15920
Sampedro, 2015, Pseudomonas chemotaxis, FEMS Microbiol. Rev., 39, 17
Santamaría-Hernando, 2022, Pseudomonas syringae pv. tomato infection of tomato plants is mediated by GABA and L-Pro chemoperception, Mol. Plant Pathol., 23, 1433, 10.1111/mpp.13238
Shu, 2003, The NIT domain: a predicted nitrate-responsive module in bacterial sensory receptors, Trends Biochem. Sci., 28, 121, 10.1016/S0968-0004(03)00032-X
Taguchi, 2006, Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv, tabaci. Cell. Microbiol., 8, 923, 10.1111/j.1462-5822.2005.00674.x
Tumewu, 2020, Requirement of γ-aminobutyric acid chemotaxis for virulence of Pseudomonas syringae pv. tabaci 6605, Microb. Environ., 35, 10.1264/jsme2.ME20114
Tumewu, 2021, Identification of chemoreceptor proteins for amino acids involved in host plant infection in Pseudomonas syringae pv. tabaci 6605, Microbiol. Res., 253, 10.1016/j.micres.2021.126869
Tumewu, 2022, Identification of aerotaxis receptor proteins involved in host plant infection by Pseudomonas syringae pv. tabaci 6605, Microb. Environ., 37, 10.1264/jsme2.ME21076
Tumewu, 2021, Cluster II che genes of Pseudomonas syringae pv. tabaci 6605, orthologs of cluster I in Pseudomonas aeruginosa, are required for chemotaxis and virulence, Mol. Genet. Genom., 296, 299, 10.1007/s00438-020-01745-y
Ud-Din, 2017, Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea, Cell. Mol. Life Sci., 74, 3293, 10.1007/s00018-017-2514-0
Ulrich, 2005, Four-helix bundle: a ubiquitous sensory module in prokaryotic signal transduction, Bioinformatics, 21, 10.1093/bioinformatics/bti1204
Yao, 2006, Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum, J. Bacteriol., 188, 3697, 10.1128/JB.188.10.3697-3708.2006
Yao, 2007, The plant pathogen Ralstonia solanacearum needs aerotaxis for normal biofilm formation and interactions with its tomato host, J. Bacteriol., 189, 6415, 10.1128/JB.00398-07