Reprogramming of bone marrow mesenchymal stem cells into cardiomyocytes
Tóm tắt
Từ khóa
Tài liệu tham khảo
[〚1〛] Soonpaa, M.H.; Koh, G.Y.; Klug, M.G.; Field, L.J. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium, Science, Volume 264 (1997), pp. 98-101
[〚2〛] Delcarpio, J.B.; Claycomb, W.C. Cardiomyocyte transfer into the mammalian heart. Cell-to-cell interactions in vivo and in vitro, Ann. N.Y. Acad. Sci., Volume 52 (1997), pp. 267-285
[〚3〛] Wobus, A.M.; Wallukat, G.; Hescheler, J. Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers, Differentiation, Volume 48 (1991), pp. 173-182
[〚4〛] Wobus, A.M.; Kleppisch, T.; Maltsev, V.; Hescheler, J. Cardiomyocyte-like cells differentiated in vitro from embryonic carcinoma cells P19 are characterized by functional expression of adrenoceptors and Ca2+ channels, In Vitro Cell. Dev. Biol. An., Volume 30 (1994), pp. 425-434
[〚5〛] Roy, N.S.; Wang, S.; Jiang, L.; Kang, J.; Benraiss, A.; Harrison-Restelli, C.; Fraser, R.A.; Couldwell, W.T.; Kawaguchi, A.; Okano, H.; Nedergaard, M.; Goldman, S.A. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus, Nat. M, Volume 6 (2000), pp. 271-277
[〚6〛] Prockop, D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues, Science, Volume 276 (1997), pp. 71-74
[〚7〛] Rickard, D.J.; Sullivan, T.A.; Shenker, B.J.; Leboy, P.S.; Kazhdan, I. Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2, Dev. Biol., Volume 161 (1994), pp. 218-228
[〚8〛] Friedenstein, A.J.; Chailakhyan, R.; Gerasimov, U.V. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers, Cell Tissue Kinet., Volume 20 (1987), pp. 263-272
[〚9〛] Ferrari, G.; Angelis, G.C.; Colleta, M.; Paolucci, E.; Stornaiolo, A.; Cossu, G.; Mavilio, F. Muscle regeneration by bone marrow-derived myogenic progenitors, Science, Volume 279 (1998), pp. 1528-1530
[〚10〛] Ashton, B.A.; Allen, T.D.; Howlett, C.R.; Eaglesom, C.C.; Hattori, A.; Owen, M. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo, Clin. Orthop., Volume 151 (1980), pp. 294-307
[〚11〛] Makino, S.; Fukuda, K.; Miyoshi, S.; Konishi, F.; Kodama, H.; Pan, J.; Sano, M.; Takahashi, T.; Hori, S.; Abe, H.; Hata, J.; Umezawa, A.; Ogawa, S. Cardiomyocytes can be generated from marrow stromal cells in vitro, J. Clin. Invest., Volume 103 (1999), pp. 697-705
[〚12〛] Hakuno, D.; Fukuda, K.; Makino, S.; Konishi, F.; Tomitra, Y.; Manabe, T.; Suzuki, Y.; Hisaka, Y.; Umezawa, A.; Ogawa, S. Bone marrow-derived cardiomyocytes (CMG cell) expressed functionally active adrenergic and muscarinic receptors, Circulation, Volume 105 (2002), pp. 380-386
[〚13〛] Beltrami, A.P.; Urbanek, K.; Kajstura, J.; Yan, S.M.; Finato, N.; Bussani, R.; Nadal-Ginard, B.; Silvestri, F.; Leri, A.; Beltrami, C.A.; Anversa, P. Evidence that human cardiac myocytes divide after myocardial infarction, N. Engl. J. M, Volume 344 (2001), pp. 1750-1757
[〚14〛] Fukuda, K. Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering, Artif. Organs, Volume 25 (2001), pp. 183-193
[〚15〛] Linnets, T.J.; Parsons, L.M.; Harley, L.; Lyons, I.; Harvey, R.P. Nkx-2.5: a novel murine homeboy gene expressed in early heart progenitor cells and their myogenic descendants, Development, Volume 119 (1993), pp. 419-431
[〚16〛] Arceci, R.J.; King, A.A.; Simon, M.C.; Orkin, S.H.; Wilson, D.B. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart, Mol. Cell. Biol., Volume 13 (1993), pp. 2235-2246
[〚17〛] Edmondson, D.G.; Lyons, G.E.; Martin, J.F.; Olson, E.N. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis, Development, Volume 120 (1994), pp. 1251-1263
[〚18〛] Chen, Z.; Friedrich, G.A.; Soriano, P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice, Genes Dev., Volume 8 (1994), pp. 2293-2301
[〚19〛] Yasui, K.; Liu, W.; Opthof, T.; Kada, K.; Lee, J.K.; Kamiya, K.; Kodama, I. I(f) current and spontaneous activity in mouse embryonic ventricular myocytes, Circ. Res., Volume 88 (2001), pp. 536-542
[〚20〛] Alonso-Llamazares, A.; Zamanillo, D.; Casanova, E.; Ovalle, S.; Calvo, P.; Chinchetru, M.A. Molecular cloning of alpha 1d-adrenergic receptor and tissue distribution of three alpha 1-adrenergic receptor subtypes in mouse, J. Neurochem., Volume 65 (1995), pp. 2387-2392
[〚21〛] Stewart, A.F.; Rokosh, D.G.; Bailey, B.A.; Karns, L.R.; Chang, K.C.; Long, C.S.; Kariya, K.; Simpson, P.C. Cloning of the rat alpha 1C-adrenergic receptor from cardiac myocytes. Alpha 1C, alpha 1B, and alpha 1D mRNAs are present in cardiac myocytes but not in cardiac fibroblasts, Circ. Res., Volume 75 (1994), pp. 796-802
[〚22〛] Rokosh, D.G.; Stewart, A.F.; Chang, K.C.; Bailey, B.A.; Karliner, J.S.; Camacho, S.A.; Long, C.S.; Simpson, P.C. Alpha1-adrenergic receptor subtype mRNAs are differentially regulated by alpha1-adrenergic and other hypertrophic stimuli in cardiac myocytes in culture and in vivo. Repression of alpha1B and alpha1D but induction of alpha1C, J. Biol. Chem., Volume 271 (1996), pp. 5839-5843
[〚23〛] Rockman, H.A.; Koch, W.J.; Lefkowitz, R.J. Cardiac function in genetically engineered mice with altered adrenergic receptor signaling, Am. J. Physiol., Volume 272 (1997), p. H1553-H1559
[〚24〛] Sharma, V.K.; Colecraft, H.M.; Rubin, L.E.; Sheu, S.S. Does mammalian heart contain only the M2 muscarinic receptor subtype?, Life Sci., Volume 60 (1997), pp. 1023-1029
[〚25〛] Nakamura, F.; Kato, M.; Kameyama, K.; Nukada, T.; Haga, T.; Kato, H.; Takenawa, T.; Kikkawa, U. Characterization of Gq family G proteins GL1 alpha (G14 alpha), GL2 alpha (G11 alpha), and Gq alpha expressed in the baculovirus-insect cell system, J. Biol. Chem., Volume 270 (1995), pp. 6246-6253
[〚26〛] Berstein, G.; Blank, J.L.; Smrcka, A.V.; Higashijima, T.; Sternweis, P.C.; Exton, J.H.; Ross, E.M. Reconstitution of agonist-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis using purified m1 muscarinic receptor, Gq/11, and phospholipase C-beta 1, J. Biol. Chem., Volume 267 (1992), pp. 8081-8088
[〚27〛] Shimizu, K.; Sugiyama, S.; Aikawa, M.; Fukumoto, Y.; Rabkin, E.; Libby, P.; Mitchell, R.N. Host bone-marrow cells are a source of donor intimal smooth-muscle-like cells in murine aortic transplant arteriopathy, Nat. M, Volume 7 (2001), pp. 738-741
[〚28〛] Kocher, A.A.; Schuster, M.D.; Szabolcs, M.J.; Takuma, S.; Burkhoff, D.; Wang, J.; Homma, S.; Edwards, N.M.; Itescu, S. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function, Nat. M, Volume 7 (2001), pp. 430-436