Reproduction and mortality rates in ecologically distinct species of murid rodents
Tóm tắt
The trade-off between reproduction and somatic maintenance is one of the most studied concepts of modern evolutionary ecology. This theory predicts a negative relationship between maximum species longevity and total reproductive output. However, studies performed on natural animal populations have found contradictory results, probably due to the unlikelihood of wild animals gaining both maximum longevity and maximum potential fecundity. A comparison of the mortality rates and reproductive output of four ecologically distinct rodent species of Cricetidae family that were maintained in the laboratory in controlled conditions revealed the different life-history tactics of subterranean social mole voles and three related aboveground species: hydrophilic water voles, arid dwarf hamsters and steppe lemmings. Regardless of the relatively higher mortality rates at early ages in mole voles, this species has considerably higher maximum species longevity and smaller litter sizes that do not depend on calendar age, whereas in dwarf hamsters and water voles clear negative correlations between female age and litter size were detected. Steppe lemmings, as a semi-social arid species, shared some life-history tactics with both mole voles and aboveground non-social rodents.
Tài liệu tham khảo
Anisimov VN, Egorov MV, Krasilshchikova MS et al (2011) Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents. Aging 3:1110–1119
Bashenina NV (1975) Guidelines for the maintenance and breeding of new in the laboratory practice species of small rodents. Moscow University Press, Moscow (in Russian)
Bashenina NV (1977) Adaptation pathways in murine rodents. Nauka, Moscow (in Russian)
Buffenstein R (2005) The naked mole-rat: a new long-living model for human aging research. J Gerontol A Biol Sci Med Sci 60:1369–1377
Buffenstein R (2008) Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J Comp Physiol B 178:439–445. https://doi.org/10.1007/s00360-007-0237-5
Cichoń M, Kozłowski J (2000) Ageing and typical survivorship curves result from optimal resource allocation. Evol Ecol Res 2:857–870
Clarke FM, Faulkes CG (1997) Dominance and queen succession in captive colonies of the eusocial naked mole-rat, Heterocephalus glaber. Proc R Soc London B Biol Sci 264:993–1000. https://doi.org/10.1098/rspb.1997.0137
Clutton-Brock TH (1984) Reproductive effort and terminal investment in iteroparous animals. Amer Nat 123:212–229
Cohen AA (2017) Aging across the tree of life: the importance of a comparative perspective for the use of animal models in aging. Biochim Biophys Acta Mol Basis 1864:2680–2689. https://doi.org/10.1016/j.bbadis.2017.05.028
Dammann P, Burda H (2007) Senescence patterns in African mole-rats (Bathyergidae, Rodentia). In: Begall S, Burda H, Schleich CE (eds) Subterranean rodents: news from underground. Springer, Berlin, pp 49–60
de Magalhães JP, Costa J (2009) A database of vertebrate longevity records and their relation to other life-history traits. J Evol Biol 22:1770–1774
de Magalhães JP, Costa J, Church GM (2007) An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J Gerontol A Biol Sci Med Sci 62:149–160
Edwards HE, Tweedie CJ, Terranova PF et al (1998) Reproductive aging in the Djungarian hamster, Phodopus campbelli. Biol Reprod 58:842–848. https://doi.org/10.1095/biolreprod58.3.842
Evdokimov NG (2011) Population dynamics and changes in the population structure of a polymorphic colony of northern mole voles. Russ J Ecol 42:241–248. https://doi.org/10.1134/S1067413611030064
Evsikov VI, Skorova SV, Nazarova GG, Moshkin MP (1989) Photoperiod effect on growth and reproductive functions in water vole (Arvicola terrestris L.). Ekologiya 6:58–63
Feoktistova NY (2008) Dwarf hamsters (Phodopus: Cricetidae): systematics, phylogeography, ecology, physiology, behaviour, chemical communication. KMK Scientific Press Ltd, Moscow (in Russian)
Gorbunova V, Bozzella MJ, Seluanov A (2008) Rodents for comparative aging studies: from mice to beavers. Age 30:111–119. https://doi.org/10.1007/s11357-008-9053-4
Gromov VS (2008) The spatial-and-ethological population structure in rodents. KMK Press, Moscow
Kirkwood TBL, Rose MR (1991) Evolution of senescence: late survival sacrificed for reproduction. Philos Trans R Soc London B: Biol Sci 332:15–24. https://doi.org/10.1098/rstb.1991.0028
Manskikh VN, Gancharova OS, Kondratuk EY, Novikov EA, Skulachev VP, Moshkin MP (2015) Spectrum of spontaneous pathological changes in mole-voles (Ellobius talpinus, Pallas) and the effect of mitochondria-targeted antioxidant SkQ1 on it. Adv Gerontol 28:53–61 (in Russian)
Moshkin M, Novikov E, Petrovski D (2007) Skimping as an adaptive strategy in social fossorial rodents: the mole vole (Ellobius talpinus) as an example. Subterr Rodents. https://doi.org/10.1007/978-3-540-69276-8_5
Nazazova GG (2013) Effects of seasonal, ontogenetic, and genetic factors on lifespan of male and female progeny of Arvicola amphibious. Front Genet 4:1–8. https://doi.org/10.3389/fgene.2013.00100
Novikov EA (2007) Frugal strategy as a base of mole-vole (Ellobius talpinus: Rodentia) adaptations to the fossorial way of life. Zh Obshch Biol 68:268–277 (in Russian)
Novikov EA, Burda G (2013) Ecological and evolutionary preconditions of extended longevity in subterranean rodents. Biol Bull Rev 3:325–333. https://doi.org/10.1134/S2079086413040051
Novikov E, Kondratyuk E, Petrovski D et al (2015a) Reproduction, aging and mortality rate in social subterranean mole voles (Ellobius talpinus Pall.). Biogerontology 16:723–732. https://doi.org/10.1007/s10522-015-9592-x
Novikov EA, Kondratyuk EY, Burda H (2015b) Age-related increase of urine cortisol in non-breeding individuals of Fukomys Anselli (Rodentia, Bathyergidae) from a laboratory colony. Zool Zhurnal 94:119–124. https://doi.org/10.7868/S0044513415010092 (in Russian)
Novikov E, Zadubrovskaya I, Zadubrovskiy P, Titova T (2017) Reproduction, ageing, and longevity in two species of laboratory rodents with different life histories. Biogerontology 18:803–809. https://doi.org/10.1007/s10522-017-9723-7
Nussey DH, Froy H, Lemaitre J-F, Gaillard J-M, Austad SN (2013) Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res Rev 12:214–225. https://doi.org/10.1016/j.arr.2012.07.004
Panteleev PA (1968) Population ecology of the water vole and methods for control. Nauka, Moscow (in Russian)
Pavlinov IY, Lissovsky AA (2012) The mammals of Russia: a taxonomic and geographic reference. KMK, Moscow
Percy DH, Barthold SW (2007) Hamster. Pathology of laboratory rodents and rabbits. Blackwell Publishing, Ames, pp 115–136
Potapov MA, Rogov VG, Ovchinnikova LE et al (2004) The effect of winter food stores on body mass and winter survival of water voles, Arvicola terrestris, in Western Siberia: the implications for population dynamics. Folia Zool 53:37–46
Ricklefs RE, Wikelski M (2002) The physiology/life-history nexus. Trends Ecol Evol 17:462–468. https://doi.org/10.1016/S0169-5347(02)02578-8
Sih A, Bell AM, Johnson JC, Ziemba RE (2004) Behavioral syndromes: an integrative overview. Q Rev Biol 79:241–277
Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford
Williams GC (1966) Adaptation and natural selection: a critique of some current evolutionary thought. Princeton University Press, Princeton