Reproducibility of mandibular landmarks for three-dimensional assessment
Tài liệu tham khảo
Indira, 2012, Mandibular ramus: an indicator for sex determination – a digital radiographic study, J. Forensic Dental Sci., 4, 58, 10.4103/0975-1475.109885
Kawale, 2015, Sexual dimorphismin human mandible: a morphometric study, IOSR J. Dent. Med. Sci., 14, 42
Damera, 2016, Radiographic evaluation of mandibular ramus for gender estimation: retrospective study, J. Forensic Dental Sci., 8, 74, 10.4103/0975-1475.186369
Rupa, 2015, Gonial angle and ramus height as sex determinants: a radiographic pilot study, J. Cranio Max Dis., 4, 111, 10.4103/2278-9588.163247
Raith, 2017, Computational geometry assessment for morphometric analysis of the mandible, Comput. Methods Biomech. Biomed. Eng., 20, 27, 10.1080/10255842.2016.1196196
Tadej, 1989, Mandibular condyle morphology in relation to malocclusions in children, Angle Orthod., 59, 187
Bertram, 2012, Lateral cephalometric analysis of mandibular morphology: discrimination among subjects with and without temporomandibular joint disk displacement and osteoarthrosis, J. Oral Rehabil., 39, 93, 10.1111/j.1365-2842.2011.02251.x
Berg, 2017, Introducing human mandible identification [(hu)MANid]: a free, web-based GUI to classify human mandibles, J. Forensic Sci., 62, 1592, 10.1111/1556-4029.13479
Preissler, 2018, Morphometric investigations to assess the compatibility of mandible and skull, Forensic Sci. Int., 286, 193, 10.1016/j.forsciint.2018.03.013
Scarfe, 2008, What is cone-beam CT and how does it work?, Dent. Clin. North Am., 52, 707, 10.1016/j.cden.2008.05.005
Aboudara, 2003, A three-dimensional evaluation of the upper airway in adolescents, Orthod. Craniofac. Res., 6, 173, 10.1034/j.1600-0544.2003.253.x
Maki, 2003, Computer‐assisted simulations in orthodontic diagnosis and the application of a new cone beam X‐ray computed tomography, Orthod. Craniofac. Res., 6, 95, 10.1034/j.1600-0544.2003.241.x
Honda, 2004, Evaluation of the usefulness of the limited cone-beam CT (3DX) in the assessment of the thickness of the roof of the glenoid fossa of the temporomandibular joint, Dentomaxillofac Radiol., 33, 391, 10.1259/dmfr/54316470
Angel, 2011, Cone-beam computed tomography for analyzing variations in inferior alveolar canal location in adults in relation to age and sex, J. Forensic Sci., 56, 216, 10.1111/j.1556-4029.2010.01508.x
Liang, 2009, Chronologic and geographic variability of neurovascular structures in the human mandible, Forensic Sci. Int., 190, 24, 10.1016/j.forsciint.2009.05.006
Star, 2011, Human dental age estimation by calculation of pulp–tooth volume ratios yielded on clinically acquired cone beam computed tomography images of monoradicular teeth, J. Forensic Sci., 56, S77, 10.1111/j.1556-4029.2010.01633.x
Cavalcanti, 1999, Three-dimensional computed tomography landmark measurement in craniofacial surgical planning: experimental validation in vitro, J. Oral Maxillofac. Surg., 57, 690, 10.1016/S0278-2391(99)90434-2
Patil, 2005, Determination of sex by discriminant function analysis and stature by regression analysis: a lateral cephalometric study, Forensic Sci. Int., 147, 175, 10.1016/j.forsciint.2004.09.071
Caple, 2016, A standardized nomenclature for craniofacial and facial anthropometry, Int. J. Legal Med., 130, 863, 10.1007/s00414-015-1292-1
Ludlow, 2009, Precision of cephalometric landmark identification: cone-beam computed tomography vs conventional cephalometric views, Am. J. Orthod., 136, 10.1016/j.ajodo.2008.12.018
Lopez-Capp, 2018, Discriminant analysis of mandibular measurements for the estimation of sex in a modern Brazilian sample, Int. J. Legal Med., 132, 843, 10.1007/s00414-017-1681-8
Carvalho, 2013, Validation of a physical anthropology methodology using mandibles for gender estimation in a Brazilian population, J. Appl. Oral Sci., 21, 358, 10.1590/1678-775720130022
Gamba, 2016, Mandibular sexual dimorphism analysis in CBCT scans, J. Forensic Leg. Med., 38, 106, 10.1016/j.jflm.2015.11.024
Saini, 2011, Mandibular ramus: an indicator for sex in fragmentary mandible, J. Forensic Sci., 56, 10.1111/j.1556-4029.2010.01599.x
Kolodziej, 2002, Evaluation of antegonial notch depth for growth prediction, Am. J. Orthod., 121, 357, 10.1067/mod.2002.121561
Hilgers, 2005, Accuracy of linear temporomandibular joint measurements with cone beam computed tomography and digital cephalometric radiography, Am. J. Orthod., 128, 803, 10.1016/j.ajodo.2005.08.034
Fuyamada, 2011, Reproducibility of landmark identification in the jaw and teeth on 3-dimensional cone-beam computed tomography images, Angle Orthod., 81, 843, 10.2319/010711-5.1
Šidlauskas, 2016, Heritability of mandibular cephalometric variables in twins with completed craniofacial growth, Eur. J. Orthod., 38, 493, 10.1093/ejo/cjv062
Koo, 2016, A guideline of selecting and reporting intraclass correlation coefficients for reliability research, J. Chiropr. Med., 15, 155, 10.1016/j.jcm.2016.02.012
Mony, 2016, Quality assurance for accuracy of anthropometric measurements in clinical and epidemiological studies [Errare humanum est = to err is human], Indian J. Community Med., 41, 98, 10.4103/0970-0218.173499
Perini, 2005, Technical error of measurement in anthropometry, Rev. Bras. Med. Esporte, 11, 81, 10.1590/S1517-86922005000100009
Langley, 2018, Data for validation of osteometric methods in forensic anthropology, Data Brief, 19, 21, 10.1016/j.dib.2018.04.148
Franklin, 2008, Mandibular morphology as an indicator of human subadult age: geometric morphometric approaches, Forensic Sci. Med. Pathol., 4, 91, 10.1007/s12024-007-9015-7
Karlo, 2010, Size, shape and age-related changes of the mandibular condyle during childhood, Eur. Radiol., 20, 2512, 10.1007/s00330-010-1828-1
Sahithi, 2016, Reveal the concealed–morphological variations of the coronoid process, condyle and sigmoid notch in personal identification, Egypt. J. Forensic Sci., 6, 108, 10.1016/j.ejfs.2015.11.003
Gillet, 2020, Sex estimation in the cranium and mandible: a multislice computed tomography (MSCT) study using anthropometric and geometric morphometry methods, Int. J. Legal Med., 134, 823, 10.1007/s00414-019-02203-0
Hassan, 2013, Precision of identifying cephalometric landmarks with cone beam computed tomography in vivo, Eur. J. Orthod., 35, 38, 10.1093/ejo/cjr050
Moreira, 2009, Assessment of linear and angular measurements on three-dimensional cone-beam computed tomographic images, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 108, 430, 10.1016/j.tripleo.2009.01.032
Liberton, 2019, Development and validation of novel three-dimensional craniofacial landmarks on cone-beam computed tomography scans, J. Craniofac. Surg., 30, 10.1097/SCS.0000000000005627
Ludlow, 2007, Accuracy of measurements of mandibular anatomy in cone beam computed tomography images, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 103, 534, 10.1016/j.tripleo.2006.04.008
Weinberg, 2005, Three-dimensional surface imaging: limitations and considerations from the anthropometric perspective, J. Craniofac. Surg., 16, 847, 10.1097/01.SCS.0000164330.96675.0C
El, 2010, Measuring the airway in 3 dimensions: a reliability and accuracy study, Am. J. Orthod., 137, 10.1016/j.ajodo.2009.11.010
Rinna, 2013, Surgical treatment of temporomandibular joint ankyloses: meniscus conservation and relocation, J. Craniofac. Surg., 24, e136, 10.1097/SCS.0b013e31827c7c63
Humphrey, 1999, Morphological variation in great ape and modern human mandibles, J. Anat., 195, 491, 10.1046/j.1469-7580.1999.19540491.x
Bayrak, 2018, Evaluation of the relationship between mandibular condyle cortication and chronologic age with cone beam computed tomography, J. Forensic Leg. Med., 55, 39, 10.1016/j.jflm.2018.02.014
Bénateau, 2004, Anatomic study of the tendinous insertion lamina of the temporalis muscle, Surg. Radiol. Anat., 26, 281, 10.1007/s00276-004-0230-6
Borghesi, 2018, Five mental foramina in the same mandible: CBCT findings of an unusual anatomical variant, Surg. Radiol. Anat., 40, 635, 10.1007/s00276-018-1969-5