Reprint of "How do components of real cloud water affect aqueous pyruvate oxidation?"

Atmospheric Research - Tập 151 - Trang 52-63 - 2015
Alexandra J. Boris1, Yury Desyaterik1, Jeffrey L. Collett1
1Atmospheric Science Department, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523, United States

Tài liệu tham khảo

Altieri, 2006, Evidence for oligomer formation in clouds: Reactions of isoprene oxidation products, Environ. Sci. Technol., 40, 4956, 10.1021/es052170n Altieri, 2008, Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry, Atmos. Environ., 42, 1476, 10.1016/j.atmosenv.2007.11.015 Anastasio, 2001, Chemistry of fog waters in California’s Central Valley: 1. In situ photoformation of hydroxyl radical and singlet molecular oxygen, Atmos. Environ., 35, 1079, 10.1016/S1352-2310(00)00281-8 Anastasio, 1997, Aromatic carbonyl compounds as aqueous-phase photochemical sources of hydrogen peroxide in acidic sulfate aerosols, fogs, and clouds. 1. Non-phenolic methoxybenzaldehydes and methoxyacetophenones with reductants (phenols), Environ. Sci. Technol., 31, 218, 10.1021/es960359g Arakaki, 1998, Sources, sinks, and mechanisms of hydroxyl radical (OH) photoproduction and consumption in authentic acidic continental cloud waters from Whiteface Mountain, New York: The role of the Fe(r) (r=II, III) photochemical cycle, J. Geophys. Res. Atmos., 103, 3487, 10.1029/97JD02795 Barsanti, 2006, Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—Part 3: Carboxylic and dicarboxylic acids, Atmos. Environ., 40, 6676, 10.1016/j.atmosenv.2006.03.013 Brantner, 1994, Cloudwater chemistry in the subcooled droplet regime at Mount Sonnblick (3106 m asl, Salzburg, Austria), Water Air Soil Pollut., 74, 363, 10.1007/BF00479800 Buxton, 1988, Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O–) in aqueous solution, J. Phys. Chem. Ref. Data, 17, 513, 10.1063/1.555805 Canonica, 2008, Inhibitory effect of dissolved organic matter on triplet-induced oxidation of aquatic contaminants, Photochem. Photobiol. Sci., 7, 547, 10.1039/b719982a Carlton, 2006, Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds, Geophys. Res. Lett., 33, 1, 10.1029/2005GL025374 Carlton, 2007, Atmospheric oxalic acid and SOA production from glyoxal: Results of aqueous photooxidation experiments, Atmos. Environ., 41, 7588, 10.1016/j.atmosenv.2007.05.035 Chan, 2013, Oligomeric products and formation mechanisms from acid-catalyzed reactions of methyl vinyl ketone on acidic sulfate particles, J. Atmos. Chem., 70, 1, 10.1007/s10874-013-9248-7 Collett, 1989, Cloudwater Chemistry in Sequoia National Park, Atmos. Environ., 23, 999, 10.1016/0004-6981(89)90303-X Crahan, 2004, An exploration of aqueous oxalic acid production in the coastal marine atmosphere, Atmos. Environ., 38, 3757, 10.1016/j.atmosenv.2004.04.009 De Haan, 2011, Formation of nitrogen-containing oligomers by methylglyoxal and amines in simulated evaporating cloud droplets, Environ. Sci. Technol., 45, 984, 10.1021/es102933x Demoz, 1996, On the Caltech Active Strand Cloudwater Collectors, Atmos. Res., 41, 47, 10.1016/0169-8095(95)00044-5 Desyaterik, 2013, Speciation of “brown” carbon in cloud water impacted by agricultural biomass burning in eastern China, J. Geophys. Res. Atmos., 118, 7389, 10.1002/jgrd.50561 Donaldson, 2010, Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: A critical review, Environ. Sci. Technol., 44, 865, 10.1021/es902720s Ervens, 2010, Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles, Atmos. Chem. Phys., 10, 8219, 10.5194/acp-10-8219-2010 Ervens, 2003, Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions, Phys. Chem. Chem. Phys., 5, 1811, 10.1039/b300072a Ervens, 2011, Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies, Atmos. Chem. Phys., 11, 11069, 10.5194/acp-11-11069-2011 Ervens, 2013, Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets, Atmos. Chem. Phys., 13, 5117, 10.5194/acp-13-5117-2013 Faust, 1993, Aqueous-phase photochemical formation of hydroxyl radical in authentic cloudwaters and fogwaters, Environ. Sci. Technol., 27, 1221, 10.1021/es00043a024 Feingold, 2000, Does cloud processing of aerosol enhance droplet concentrations?, J. Geophys. Res. Atmos., 105, 24351, 10.1029/2000JD900369 Galloway, 2009, Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions, Atmos. Chem. Phys., 9, 3331, 10.5194/acp-9-3331-2009 Griffith, 2013, Photochemistry of aqueous pyruvic acid, Proc. Natl. Acad. Sci. U. S. A., 110, 11714, 10.1073/pnas.1303206110 Guo, 2012, Characterization of cloud water chemistry at Mount Tai, China: Seasonal variation, anthropogenic impact, and cloud processing, Atmos. Environ., 60, 467, 10.1016/j.atmosenv.2012.07.016 Guzman, 2006, Photoinduced oligomerization of aqueous pyruvic acid, J. Phys. Chem. A, 110, 3619, 10.1021/jp056097z Harrison, 2005, Nitrated phenols in the atmosphere: a review, Atmos. Environ., 39, 231, 10.1016/j.atmosenv.2004.09.044 Haynes, W.M., Bruno, T.J., and Lide, D.R. editors, 2013. Handbook of Chemistry and Physics 94th ed., Cleveland, OH: CRC Press Hegg, 2004, Observations of the impact of cloud processing on aerosol light-scattering efficiency, Tellus, 56B, 285, 10.3402/tellusb.v56i3.16417 Herckes, 2013, A review of observations of organic matter in fogs and clouds: Origin, processing and fate, Atmos. Res., 132–133, 434, 10.1016/j.atmosres.2013.06.005 Herrmann, 1995, Laboratory studies of atmospheric aqueous-phase free-radical chemistry: kinetic and spectroscopic studies of reactions of NO3 and SO4- radicals with aromatic compounds, Faraday Discuss., 100, 129, 10.1039/fd9950000129 Jammoul, 2009, Photoinduced oxidation of sea salt halides by aromatic ketones: A source of halogenated radicals, Atmos. Chem. Phys., 9, 4229, 10.5194/acp-9-4229-2009 John, 1990, Modes in the size distributions of atmospheric inorganic aerosol, Atmos. Environ., 24, 2349, 10.1016/0960-1686(90)90327-J Kampf, 2012, Identification and characterization of aging products in the glyoxal/ammonium sulfate system – implications for light-absorbing material in atmospheric aerosols, Atmos. Chem. Phys., 12, 6323, 10.5194/acp-12-6323-2012 Kavitha, 2005, Degradation of nitrophenols by Fenton and photo-Fenton processes, J. Photochem. Photobiol. A Chem., 170, 83, 10.1016/j.jphotochem.2004.08.003 Khwaja, 1995, Chemical characterization of three summer cloud episodes at Whiteface Mountain, Chemosphere, 31, 3357, 10.1016/0045-6535(95)00187-D Kirkland, 2013, Glyoxal secondary organic aerosol chemistry: effects of dilute nitrate and ammonium and support for organic radical-radical oligomer formation, Environ. Chem., 10, 158, 10.1071/EN13074 Lee, 2011, Aqueous-phase OH oxidation of glyoxal: application of a novel analytical approach employing aerosol mass spectrometry and complementary off-line techniques, J. Phys. Chem. A, 115, 10517, 10.1021/jp204099g Lee, 2011, Aqueous OH oxidation of ambient organic aerosol and cloud water organics: Formation of highly oxidized products, Geophys. Res. Lett., 38, 1, 10.1029/2011GL047439 Lee, 2012, Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing, Atmos. Chem. Phys., 12, 6019, 10.5194/acpd-12-6019-2012 Lim, 2005, Isoprene Forms Secondary Organic Aerosol through Cloud Processing: Model Simulations, Environ. Sci. Technol., 39, 4441, 10.1021/es048039h Lim, 2010, Aqueous chemistry and its role in secondary organic aerosol (SOA) formation, Atmos. Chem. Phys., 10, 10521, 10.5194/acp-10-10521-2010 Lim, 2013, Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase, Atmos. Chem. Phys., 13, 8651, 10.5194/acp-13-8651-2013 Lin, 2011, Generation of Reactive Oxygen Species Mediated by Humic-like Substances in Atmospheric Aerosols, Environ. Sci. Technol., 45, 10362, 10.1021/es2028229 Loeffler, 2006, Oligomer Formation in Evaporating Aqueous Glyoxal and Methyl Glyoxal Solutions, Environ. Sci. Technol., 40, 6318, 10.1021/es060810w Mazzoleni, 2010, Water-soluble atmospheric organic matter in fog: Exact masses and chemical formula identification by ultrahigh-resolution fourier transform ion cyclotron resonance mass spectrometry, Environ. Sci. Technol., 44, 3690, 10.1021/es903409k Page, 2011, Assessing the contribution of free hydroxyl radical in organic matter-sensitized photohydroxylation reactions, Environ. Sci. Technol., 45, 2818, 10.1021/es2000694 Pocker, 1969, The Reversible Hydration of Pyruvic Acid I. Equilibrium Studies, J. Phys. Chem., 73, 2879, 10.1021/j100843a015 Rahn, 2003, Quantum Yield of the Iodide–Iodate Chemical Actinometer: Dependence on Wavelength and Concentration, Photochem. Photobiol., 78, 146, 10.1562/0031-8655(2003)078<0146:QYOTIC>2.0.CO;2 Sakugawa, 1990, Atmospheric hydrogen peroxide, Environ. Sci. Technol., 10, 29 Sareen, 2010, Secondary organic material formed by methylglyoxal in aqueous aerosol mimics, Atmos. Chem. Phys., 10, 997, 10.5194/acp-10-997-2010 Shapiro, 2009, Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics, Atmos. Chem. Phys., 9, 2289, 10.5194/acp-9-2289-2009 Shen, 2012, Aqueous phase sulfate production in clouds in eastern China, Atmos. Environ., 62, 502, 10.1016/j.atmosenv.2012.07.079 Stefan, 1999, Reinvestigation of the Acetone Degradation Mechanism in Dilute Aqueous Solution by the UV/H2O2 Process, Environ. Sci. Technol., 33, 870, 10.1021/es9808548 Stefan, 1996, Kinetics and Mechanism of the Degradation and Mineralization of Acetone in Dilute Aqueous Solution Sensitized by the UV Photolysis of Hydrogen Peroxide, Environ. Sci. Technol., 30, 2382, 10.1021/es950866i Sun, 2010, Insights into secondary organic aerosol formed via aqueous-phase reactions of phenolic compounds based on high resolution mass spectrometry, Atmos. Chem. Phys., 10, 4809, 10.5194/acp-10-4809-2010 Tan, 2009, Effects of Precursor Concentration and Acidic Sulfate in Aqueous Glyoxal-OH Radical Oxidation and Implications for Secondary Organic Aerosol, Environ. Sci. Technol., 43, 8105, 10.1021/es901742f Tan, 2010, SOA from methylglyoxal in clouds and wet aerosols: Measurement and prediction of key products, Atmos. Environ., 44, 5218, 10.1016/j.atmosenv.2010.08.045 Tan, 2012, Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal, Atmos. Chem. Phys., 12, 801, 10.5194/acp-12-801-2012 Zhang, 2003, Kinetics, degradation pathway and reaction mechanism of advanced oxidation of 4-nitrophenol in water by a UV/H2O2 process, J. Chem. Technol. Biotechnol., 794, 788, 10.1002/jctb.864 Zhang, 2011, Effect of relative humidity on SOA formation from isoprene/NO photooxidation: enhancement of 2-methylglyceric acid and its corresponding oligoesters under dry conditions, Atmos. Chem. Phys., 11, 6411, 10.5194/acp-11-6411-2011 Zuo, 1994, Photochemical decomposition of oxalic, glyoxalic and pyruvic acid catalysed by iron in atmospheric waters, Atmos. Environ., 2, 1231, 10.1016/1352-2310(94)90270-4