Reprint of "How do components of real cloud water affect aqueous pyruvate oxidation?"
Tài liệu tham khảo
Altieri, 2006, Evidence for oligomer formation in clouds: Reactions of isoprene oxidation products, Environ. Sci. Technol., 40, 4956, 10.1021/es052170n
Altieri, 2008, Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry, Atmos. Environ., 42, 1476, 10.1016/j.atmosenv.2007.11.015
Anastasio, 2001, Chemistry of fog waters in California’s Central Valley: 1. In situ photoformation of hydroxyl radical and singlet molecular oxygen, Atmos. Environ., 35, 1079, 10.1016/S1352-2310(00)00281-8
Anastasio, 1997, Aromatic carbonyl compounds as aqueous-phase photochemical sources of hydrogen peroxide in acidic sulfate aerosols, fogs, and clouds. 1. Non-phenolic methoxybenzaldehydes and methoxyacetophenones with reductants (phenols), Environ. Sci. Technol., 31, 218, 10.1021/es960359g
Arakaki, 1998, Sources, sinks, and mechanisms of hydroxyl radical (OH) photoproduction and consumption in authentic acidic continental cloud waters from Whiteface Mountain, New York: The role of the Fe(r) (r=II, III) photochemical cycle, J. Geophys. Res. Atmos., 103, 3487, 10.1029/97JD02795
Barsanti, 2006, Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—Part 3: Carboxylic and dicarboxylic acids, Atmos. Environ., 40, 6676, 10.1016/j.atmosenv.2006.03.013
Brantner, 1994, Cloudwater chemistry in the subcooled droplet regime at Mount Sonnblick (3106 m asl, Salzburg, Austria), Water Air Soil Pollut., 74, 363, 10.1007/BF00479800
Buxton, 1988, Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O–) in aqueous solution, J. Phys. Chem. Ref. Data, 17, 513, 10.1063/1.555805
Canonica, 2008, Inhibitory effect of dissolved organic matter on triplet-induced oxidation of aquatic contaminants, Photochem. Photobiol. Sci., 7, 547, 10.1039/b719982a
Carlton, 2006, Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds, Geophys. Res. Lett., 33, 1, 10.1029/2005GL025374
Carlton, 2007, Atmospheric oxalic acid and SOA production from glyoxal: Results of aqueous photooxidation experiments, Atmos. Environ., 41, 7588, 10.1016/j.atmosenv.2007.05.035
Chan, 2013, Oligomeric products and formation mechanisms from acid-catalyzed reactions of methyl vinyl ketone on acidic sulfate particles, J. Atmos. Chem., 70, 1, 10.1007/s10874-013-9248-7
Collett, 1989, Cloudwater Chemistry in Sequoia National Park, Atmos. Environ., 23, 999, 10.1016/0004-6981(89)90303-X
Crahan, 2004, An exploration of aqueous oxalic acid production in the coastal marine atmosphere, Atmos. Environ., 38, 3757, 10.1016/j.atmosenv.2004.04.009
De Haan, 2011, Formation of nitrogen-containing oligomers by methylglyoxal and amines in simulated evaporating cloud droplets, Environ. Sci. Technol., 45, 984, 10.1021/es102933x
Demoz, 1996, On the Caltech Active Strand Cloudwater Collectors, Atmos. Res., 41, 47, 10.1016/0169-8095(95)00044-5
Desyaterik, 2013, Speciation of “brown” carbon in cloud water impacted by agricultural biomass burning in eastern China, J. Geophys. Res. Atmos., 118, 7389, 10.1002/jgrd.50561
Donaldson, 2010, Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: A critical review, Environ. Sci. Technol., 44, 865, 10.1021/es902720s
Ervens, 2010, Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles, Atmos. Chem. Phys., 10, 8219, 10.5194/acp-10-8219-2010
Ervens, 2003, Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions, Phys. Chem. Chem. Phys., 5, 1811, 10.1039/b300072a
Ervens, 2011, Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies, Atmos. Chem. Phys., 11, 11069, 10.5194/acp-11-11069-2011
Ervens, 2013, Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets, Atmos. Chem. Phys., 13, 5117, 10.5194/acp-13-5117-2013
Faust, 1993, Aqueous-phase photochemical formation of hydroxyl radical in authentic cloudwaters and fogwaters, Environ. Sci. Technol., 27, 1221, 10.1021/es00043a024
Feingold, 2000, Does cloud processing of aerosol enhance droplet concentrations?, J. Geophys. Res. Atmos., 105, 24351, 10.1029/2000JD900369
Galloway, 2009, Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions, Atmos. Chem. Phys., 9, 3331, 10.5194/acp-9-3331-2009
Griffith, 2013, Photochemistry of aqueous pyruvic acid, Proc. Natl. Acad. Sci. U. S. A., 110, 11714, 10.1073/pnas.1303206110
Guo, 2012, Characterization of cloud water chemistry at Mount Tai, China: Seasonal variation, anthropogenic impact, and cloud processing, Atmos. Environ., 60, 467, 10.1016/j.atmosenv.2012.07.016
Guzman, 2006, Photoinduced oligomerization of aqueous pyruvic acid, J. Phys. Chem. A, 110, 3619, 10.1021/jp056097z
Harrison, 2005, Nitrated phenols in the atmosphere: a review, Atmos. Environ., 39, 231, 10.1016/j.atmosenv.2004.09.044
Haynes, W.M., Bruno, T.J., and Lide, D.R. editors, 2013. Handbook of Chemistry and Physics 94th ed., Cleveland, OH: CRC Press
Hegg, 2004, Observations of the impact of cloud processing on aerosol light-scattering efficiency, Tellus, 56B, 285, 10.3402/tellusb.v56i3.16417
Herckes, 2013, A review of observations of organic matter in fogs and clouds: Origin, processing and fate, Atmos. Res., 132–133, 434, 10.1016/j.atmosres.2013.06.005
Herrmann, 1995, Laboratory studies of atmospheric aqueous-phase free-radical chemistry: kinetic and spectroscopic studies of reactions of NO3 and SO4- radicals with aromatic compounds, Faraday Discuss., 100, 129, 10.1039/fd9950000129
Jammoul, 2009, Photoinduced oxidation of sea salt halides by aromatic ketones: A source of halogenated radicals, Atmos. Chem. Phys., 9, 4229, 10.5194/acp-9-4229-2009
John, 1990, Modes in the size distributions of atmospheric inorganic aerosol, Atmos. Environ., 24, 2349, 10.1016/0960-1686(90)90327-J
Kampf, 2012, Identification and characterization of aging products in the glyoxal/ammonium sulfate system – implications for light-absorbing material in atmospheric aerosols, Atmos. Chem. Phys., 12, 6323, 10.5194/acp-12-6323-2012
Kavitha, 2005, Degradation of nitrophenols by Fenton and photo-Fenton processes, J. Photochem. Photobiol. A Chem., 170, 83, 10.1016/j.jphotochem.2004.08.003
Khwaja, 1995, Chemical characterization of three summer cloud episodes at Whiteface Mountain, Chemosphere, 31, 3357, 10.1016/0045-6535(95)00187-D
Kirkland, 2013, Glyoxal secondary organic aerosol chemistry: effects of dilute nitrate and ammonium and support for organic radical-radical oligomer formation, Environ. Chem., 10, 158, 10.1071/EN13074
Lee, 2011, Aqueous-phase OH oxidation of glyoxal: application of a novel analytical approach employing aerosol mass spectrometry and complementary off-line techniques, J. Phys. Chem. A, 115, 10517, 10.1021/jp204099g
Lee, 2011, Aqueous OH oxidation of ambient organic aerosol and cloud water organics: Formation of highly oxidized products, Geophys. Res. Lett., 38, 1, 10.1029/2011GL047439
Lee, 2012, Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing, Atmos. Chem. Phys., 12, 6019, 10.5194/acpd-12-6019-2012
Lim, 2005, Isoprene Forms Secondary Organic Aerosol through Cloud Processing: Model Simulations, Environ. Sci. Technol., 39, 4441, 10.1021/es048039h
Lim, 2010, Aqueous chemistry and its role in secondary organic aerosol (SOA) formation, Atmos. Chem. Phys., 10, 10521, 10.5194/acp-10-10521-2010
Lim, 2013, Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase, Atmos. Chem. Phys., 13, 8651, 10.5194/acp-13-8651-2013
Lin, 2011, Generation of Reactive Oxygen Species Mediated by Humic-like Substances in Atmospheric Aerosols, Environ. Sci. Technol., 45, 10362, 10.1021/es2028229
Loeffler, 2006, Oligomer Formation in Evaporating Aqueous Glyoxal and Methyl Glyoxal Solutions, Environ. Sci. Technol., 40, 6318, 10.1021/es060810w
Mazzoleni, 2010, Water-soluble atmospheric organic matter in fog: Exact masses and chemical formula identification by ultrahigh-resolution fourier transform ion cyclotron resonance mass spectrometry, Environ. Sci. Technol., 44, 3690, 10.1021/es903409k
Page, 2011, Assessing the contribution of free hydroxyl radical in organic matter-sensitized photohydroxylation reactions, Environ. Sci. Technol., 45, 2818, 10.1021/es2000694
Pocker, 1969, The Reversible Hydration of Pyruvic Acid I. Equilibrium Studies, J. Phys. Chem., 73, 2879, 10.1021/j100843a015
Rahn, 2003, Quantum Yield of the Iodide–Iodate Chemical Actinometer: Dependence on Wavelength and Concentration, Photochem. Photobiol., 78, 146, 10.1562/0031-8655(2003)078<0146:QYOTIC>2.0.CO;2
Sakugawa, 1990, Atmospheric hydrogen peroxide, Environ. Sci. Technol., 10, 29
Sareen, 2010, Secondary organic material formed by methylglyoxal in aqueous aerosol mimics, Atmos. Chem. Phys., 10, 997, 10.5194/acp-10-997-2010
Shapiro, 2009, Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics, Atmos. Chem. Phys., 9, 2289, 10.5194/acp-9-2289-2009
Shen, 2012, Aqueous phase sulfate production in clouds in eastern China, Atmos. Environ., 62, 502, 10.1016/j.atmosenv.2012.07.079
Stefan, 1999, Reinvestigation of the Acetone Degradation Mechanism in Dilute Aqueous Solution by the UV/H2O2 Process, Environ. Sci. Technol., 33, 870, 10.1021/es9808548
Stefan, 1996, Kinetics and Mechanism of the Degradation and Mineralization of Acetone in Dilute Aqueous Solution Sensitized by the UV Photolysis of Hydrogen Peroxide, Environ. Sci. Technol., 30, 2382, 10.1021/es950866i
Sun, 2010, Insights into secondary organic aerosol formed via aqueous-phase reactions of phenolic compounds based on high resolution mass spectrometry, Atmos. Chem. Phys., 10, 4809, 10.5194/acp-10-4809-2010
Tan, 2009, Effects of Precursor Concentration and Acidic Sulfate in Aqueous Glyoxal-OH Radical Oxidation and Implications for Secondary Organic Aerosol, Environ. Sci. Technol., 43, 8105, 10.1021/es901742f
Tan, 2010, SOA from methylglyoxal in clouds and wet aerosols: Measurement and prediction of key products, Atmos. Environ., 44, 5218, 10.1016/j.atmosenv.2010.08.045
Tan, 2012, Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal, Atmos. Chem. Phys., 12, 801, 10.5194/acp-12-801-2012
Zhang, 2003, Kinetics, degradation pathway and reaction mechanism of advanced oxidation of 4-nitrophenol in water by a UV/H2O2 process, J. Chem. Technol. Biotechnol., 794, 788, 10.1002/jctb.864
Zhang, 2011, Effect of relative humidity on SOA formation from isoprene/NO photooxidation: enhancement of 2-methylglyceric acid and its corresponding oligoesters under dry conditions, Atmos. Chem. Phys., 11, 6411, 10.5194/acp-11-6411-2011
Zuo, 1994, Photochemical decomposition of oxalic, glyoxalic and pyruvic acid catalysed by iron in atmospheric waters, Atmos. Environ., 2, 1231, 10.1016/1352-2310(94)90270-4