Repression of protein synthesis by miRNAs: how many mechanisms?

Trends in Cell Biology - Tập 17 Số 3 - Trang 118-126 - 2007
Ramesh S. Pillai1, Suvendra N. Bhattacharyya2, Witold Filipowicz2
1European Molecular Biology Laboratory, Grenoble Outstation, B.P. 181, 38042 Grenoble Cedex 9, France
2Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ambros, 2004, The functions of animal microRNAs, Nature, 431, 350, 10.1038/nature02871

Bartel, 2004, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116, 281, 10.1016/S0092-8674(04)00045-5

Wienholds, 2005, MicroRNA function in animal development, FEBS Lett., 579, 5911, 10.1016/j.febslet.2005.07.070

Kim, 2005, MicroRNA biogenesis: coordinated cropping and dicing, Nat. Rev. Mol. Cell Biol., 6, 376, 10.1038/nrm1644

Tomari, 2005, Perspective: machines for RNAi, Genes Dev., 19, 517, 10.1101/gad.1284105

Zamore, 2005, Ribo-gnome: the big world of small RNAs, Science, 309, 1519, 10.1126/science.1111444

Filipowicz, 2005, RNAi: the nuts and bolts of the RISC machine, Cell, 122, 17, 10.1016/j.cell.2005.06.023

Meister, 2004, Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs, Mol. Cell, 15, 185, 10.1016/j.molcel.2004.07.007

Liu, 2004, Argonaute2 is the catalytic engine of mammalian RNAi, Science, 305, 1437, 10.1126/science.1102513

Pillai, 2004, Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis, RNA, 10, 1518, 10.1261/rna.7131604

Okamura, 2004, Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways, Genes Dev., 18, 1655, 10.1101/gad.1210204

Miyoshi, 2005, Slicer function of Drosophila Argonautes and its involvement in RISC formation, Genes Dev., 19, 2837, 10.1101/gad.1370605

Pillai, 2005, MicroRNA function: multiple mechanisms for a tiny RNA?, RNA, 11, 1753, 10.1261/rna.2248605

Valencia-Sanchez, 2006, Control of translation and mRNA degradation by miRNAs and siRNAs, Genes Dev., 20, 515, 10.1101/gad.1399806

Bhattacharyya, 2006, Relief of microRNA-mediated translational repression in human cells subjected to stress, Cell, 125, 1111, 10.1016/j.cell.2006.04.031

Doench, 2003, siRNAs can function as miRNAs, Genes Dev., 17, 438, 10.1101/gad.1064703

Fazi, 2005, A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPα regulates human granulopoiesis, Cell, 123, 819, 10.1016/j.cell.2005.09.023

Humphreys, 2005, MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function, Proc. Natl. Acad. Sci. U. S. A., 102, 16961, 10.1073/pnas.0506482102

Petersen, 2006, Short RNAs repress translation after initiation in mammalian cells, Mol. Cell, 21, 533, 10.1016/j.molcel.2006.01.031

Pillai, 2005, Inhibition of translational initiation by let-7 microRNA in human cells, Science, 309, 1573, 10.1126/science.1115079

Behm-Ansmant, 2006, mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes, Genes Dev., 20, 1885, 10.1101/gad.1424106

Wang, 2006, Recapitulation of short RNA-directed translational gene silencing in vitro, Mol. Cell, 22, 553, 10.1016/j.molcel.2006.03.034

Olsen, 1999, The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation, Dev. Biol., 216, 671, 10.1006/dbio.1999.9523

Seggerson, 2002, Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation, Dev. Biol., 243, 215, 10.1006/dbio.2001.0563

Wilusz, 2001, The cap-to-tail guide to mRNA turnover, Nat. Rev. Mol. Cell Biol., 2, 237, 10.1038/35067025

Gingras, 1999, eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation, Annu. Rev. Biochem., 68, 913, 10.1146/annurev.biochem.68.1.913

Wu, 2006, MicroRNAs direct rapid deadenylation of mRNA, Proc. Natl. Acad. Sci. U. S. A., 103, 4034, 10.1073/pnas.0510928103

Sen, 2005, Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies, Nat. Cell Biol., 7, 633, 10.1038/ncb1265

Liu, 2005, MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies, Nat. Cell Biol., 7, 719, 10.1038/ncb1274

Jakymiw, 2005, Disruption of GW bodies impairs mammalian RNA interference, Nat. Cell Biol., 7, 1267, 10.1038/ncb1334

Meister, 2005, Identification of novel Argonaute-associated proteins, Curr. Biol., 15, 2149, 10.1016/j.cub.2005.10.048

Parker, 2004, The enzymes and control of eukaryotic mRNA turnover, Nat. Struct. Mol. Biol., 11, 121, 10.1038/nsmb724

Pauley, 2006, Formation of GW bodies is a consequence of microRNA genesis, EMBO Rep, 7, 904, 10.1038/sj.embor.7400783

Chu, 2006, Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54, PLoS Biol., 4, e210, 10.1371/journal.pbio.0040210

Liu, 2005, A role for the P-body component GW182 in microRNA function, Nat. Cell Biol., 7, 1261, 10.1038/ncb1333

Rehwinkel, 2005, A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing, RNA, 11, 1640, 10.1261/rna.2191905

Ding, 2005, The developmental timing regulator AIN-1 interacts with miRISCs and may target the Argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans, Mol. Cell, 19, 437, 10.1016/j.molcel.2005.07.013

Coller, 2005, General translational repression by activators of mRNA decapping, Cell, 122, 875, 10.1016/j.cell.2005.07.012

Lim, 2005, Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs, Nature, 433, 769, 10.1038/nature03315

Krutzfeldt, 2005, Silencing of microRNAs in vivo with ‘antagomirs’, Nature, 438, 685, 10.1038/nature04303

Rehwinkel, 2006, Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster, Mol. Cell. Biol., 26, 2965, 10.1128/MCB.26.8.2965-2975.2006

Schmitter, 2006, Effects of Dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells, Nucleic Acids Res, 10.1093/nar/gkl646

Bagga, 2005, Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation, Cell, 122, 553, 10.1016/j.cell.2005.07.031

Giraldez, 2006, Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs, Science, 312, 75, 10.1126/science.1122689

Chiu, 2003, siRNA function in RNAi: a chemical modification analysis, RNA, 9, 1034, 10.1261/rna.5103703

Haley, 2004, Kinetic analysis of the RNAi enzyme complex, Nat. Struct. Mol. Biol., 11, 599, 10.1038/nsmb780

Ma, 2005, Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein, Nature, 434, 666, 10.1038/nature03514

Brennan, 2001, HuR and mRNA stability, Cell. Mol. Life Sci., 58, 266, 10.1007/PL00000854

Lal, 2005, Antiapoptotic function of RNA-binding protein HuR effected through prothymosin α, EMBO J., 24, 1852, 10.1038/sj.emboj.7600661

Sutton, 2005, Local translational control in dendrites and its role in long-term synaptic plasticity, J. Neurobiol., 64, 116, 10.1002/neu.20152

Schratt, 2006, A brain-specific microRNA regulates dendritic spine development, Nature, 439, 283, 10.1038/nature04367

Ashraf, 2006, Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila, Cell, 124, 191, 10.1016/j.cell.2005.12.017

Segal, 2006, Sbp1p affects translational repression and decapping in Saccharomyces cerevisiae, Mol. Cell. Biol., 26, 5120, 10.1128/MCB.01913-05

Jing, 2005, Involvement of microRNA in AU-rich element-mediated mRNA instability, Cell, 120, 623, 10.1016/j.cell.2004.12.038

Gebauer, 2004, Molecular mechanisms of translational control, Nat. Rev. Mol. Cell Biol., 5, 827, 10.1038/nrm1488

Richter, 2005, Regulation of cap-dependent translation by eIF4E inhibitory proteins, Nature, 433, 477, 10.1038/nature03205

Sarnow, 2005, Takeover of host ribosomes by divergent IRES elements, Biochem. Soc. Trans., 33, 1479, 10.1042/BST20051479

Pestova, 2001, Molecular mechanisms of translation initiation in eukaryotes, Proc. Natl. Acad. Sci. U. S. A., 98, 7029, 10.1073/pnas.111145798

Turner, 2000, Detecting and measuring cotranslational protein degradation in vivo, Science, 289, 2117, 10.1126/science.289.5487.2117

Anderson, 2006, RNA granules, J. Cell Biol., 172, 803, 10.1083/jcb.200512082

Coller, 2004, Eukaryotic mRNA decapping, Annu. Rev. Biochem., 73, 861, 10.1146/annurev.biochem.73.011303.074032

Teixeira, 2005, Processing bodies require RNA for assembly and contain nontranslating mRNAs, RNA, 11, 371, 10.1261/rna.7258505

Brengues, 2005, Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies, Science, 310, 486, 10.1126/science.1115791

Andrei, 2005, A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies, RNA, 11, 717, 10.1261/rna.2340405

Cougot, 2004, Cytoplasmic foci are sites of mRNA decay in human cells, J. Cell Biol., 165, 31, 10.1083/jcb.200309008

Sheth, 2003, Decapping and decay of messenger RNA occur in cytoplasmic processing bodies, Science, 300, 805, 10.1126/science.1082320

Kedersha, 2005, Stress granules and processing bodies are dynamically linked sites of mRNP remodeling, J. Cell Biol., 169, 871, 10.1083/jcb.200502088

Nottrott, 2006, Human let-7a miRNA blocks protein production on actively translating polyribosomes, Nat. Struct. Mol. Biol., 13, 1108, 10.1038/nsmb1173

Maroney, 2006, Evidence that microRNAs are associated with translating messenger RNAs in human cells, Nat. Struct. Mol. Biol., 13, 1102, 10.1038/nsmb1174

Leung, 2006, Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules, Proc. Natl. Acad. Sci. U. S. A., 103, 18125, 10.1073/pnas.0608845103

Jackson, R.J. and Standart, N. How do microRNAs regulate gene expression? Science (in press)