Repression of protein synthesis by miRNAs: how many mechanisms?
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bartel, 2004, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116, 281, 10.1016/S0092-8674(04)00045-5
Wienholds, 2005, MicroRNA function in animal development, FEBS Lett., 579, 5911, 10.1016/j.febslet.2005.07.070
Kim, 2005, MicroRNA biogenesis: coordinated cropping and dicing, Nat. Rev. Mol. Cell Biol., 6, 376, 10.1038/nrm1644
Filipowicz, 2005, RNAi: the nuts and bolts of the RISC machine, Cell, 122, 17, 10.1016/j.cell.2005.06.023
Meister, 2004, Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs, Mol. Cell, 15, 185, 10.1016/j.molcel.2004.07.007
Liu, 2004, Argonaute2 is the catalytic engine of mammalian RNAi, Science, 305, 1437, 10.1126/science.1102513
Pillai, 2004, Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis, RNA, 10, 1518, 10.1261/rna.7131604
Okamura, 2004, Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways, Genes Dev., 18, 1655, 10.1101/gad.1210204
Miyoshi, 2005, Slicer function of Drosophila Argonautes and its involvement in RISC formation, Genes Dev., 19, 2837, 10.1101/gad.1370605
Pillai, 2005, MicroRNA function: multiple mechanisms for a tiny RNA?, RNA, 11, 1753, 10.1261/rna.2248605
Valencia-Sanchez, 2006, Control of translation and mRNA degradation by miRNAs and siRNAs, Genes Dev., 20, 515, 10.1101/gad.1399806
Bhattacharyya, 2006, Relief of microRNA-mediated translational repression in human cells subjected to stress, Cell, 125, 1111, 10.1016/j.cell.2006.04.031
Fazi, 2005, A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPα regulates human granulopoiesis, Cell, 123, 819, 10.1016/j.cell.2005.09.023
Humphreys, 2005, MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function, Proc. Natl. Acad. Sci. U. S. A., 102, 16961, 10.1073/pnas.0506482102
Petersen, 2006, Short RNAs repress translation after initiation in mammalian cells, Mol. Cell, 21, 533, 10.1016/j.molcel.2006.01.031
Pillai, 2005, Inhibition of translational initiation by let-7 microRNA in human cells, Science, 309, 1573, 10.1126/science.1115079
Behm-Ansmant, 2006, mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes, Genes Dev., 20, 1885, 10.1101/gad.1424106
Wang, 2006, Recapitulation of short RNA-directed translational gene silencing in vitro, Mol. Cell, 22, 553, 10.1016/j.molcel.2006.03.034
Olsen, 1999, The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation, Dev. Biol., 216, 671, 10.1006/dbio.1999.9523
Seggerson, 2002, Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation, Dev. Biol., 243, 215, 10.1006/dbio.2001.0563
Wilusz, 2001, The cap-to-tail guide to mRNA turnover, Nat. Rev. Mol. Cell Biol., 2, 237, 10.1038/35067025
Gingras, 1999, eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation, Annu. Rev. Biochem., 68, 913, 10.1146/annurev.biochem.68.1.913
Wu, 2006, MicroRNAs direct rapid deadenylation of mRNA, Proc. Natl. Acad. Sci. U. S. A., 103, 4034, 10.1073/pnas.0510928103
Sen, 2005, Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies, Nat. Cell Biol., 7, 633, 10.1038/ncb1265
Liu, 2005, MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies, Nat. Cell Biol., 7, 719, 10.1038/ncb1274
Jakymiw, 2005, Disruption of GW bodies impairs mammalian RNA interference, Nat. Cell Biol., 7, 1267, 10.1038/ncb1334
Meister, 2005, Identification of novel Argonaute-associated proteins, Curr. Biol., 15, 2149, 10.1016/j.cub.2005.10.048
Parker, 2004, The enzymes and control of eukaryotic mRNA turnover, Nat. Struct. Mol. Biol., 11, 121, 10.1038/nsmb724
Pauley, 2006, Formation of GW bodies is a consequence of microRNA genesis, EMBO Rep, 7, 904, 10.1038/sj.embor.7400783
Chu, 2006, Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54, PLoS Biol., 4, e210, 10.1371/journal.pbio.0040210
Liu, 2005, A role for the P-body component GW182 in microRNA function, Nat. Cell Biol., 7, 1261, 10.1038/ncb1333
Rehwinkel, 2005, A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing, RNA, 11, 1640, 10.1261/rna.2191905
Ding, 2005, The developmental timing regulator AIN-1 interacts with miRISCs and may target the Argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans, Mol. Cell, 19, 437, 10.1016/j.molcel.2005.07.013
Coller, 2005, General translational repression by activators of mRNA decapping, Cell, 122, 875, 10.1016/j.cell.2005.07.012
Lim, 2005, Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs, Nature, 433, 769, 10.1038/nature03315
Krutzfeldt, 2005, Silencing of microRNAs in vivo with ‘antagomirs’, Nature, 438, 685, 10.1038/nature04303
Rehwinkel, 2006, Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster, Mol. Cell. Biol., 26, 2965, 10.1128/MCB.26.8.2965-2975.2006
Schmitter, 2006, Effects of Dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells, Nucleic Acids Res, 10.1093/nar/gkl646
Bagga, 2005, Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation, Cell, 122, 553, 10.1016/j.cell.2005.07.031
Giraldez, 2006, Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs, Science, 312, 75, 10.1126/science.1122689
Chiu, 2003, siRNA function in RNAi: a chemical modification analysis, RNA, 9, 1034, 10.1261/rna.5103703
Haley, 2004, Kinetic analysis of the RNAi enzyme complex, Nat. Struct. Mol. Biol., 11, 599, 10.1038/nsmb780
Ma, 2005, Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein, Nature, 434, 666, 10.1038/nature03514
Lal, 2005, Antiapoptotic function of RNA-binding protein HuR effected through prothymosin α, EMBO J., 24, 1852, 10.1038/sj.emboj.7600661
Sutton, 2005, Local translational control in dendrites and its role in long-term synaptic plasticity, J. Neurobiol., 64, 116, 10.1002/neu.20152
Schratt, 2006, A brain-specific microRNA regulates dendritic spine development, Nature, 439, 283, 10.1038/nature04367
Ashraf, 2006, Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila, Cell, 124, 191, 10.1016/j.cell.2005.12.017
Segal, 2006, Sbp1p affects translational repression and decapping in Saccharomyces cerevisiae, Mol. Cell. Biol., 26, 5120, 10.1128/MCB.01913-05
Jing, 2005, Involvement of microRNA in AU-rich element-mediated mRNA instability, Cell, 120, 623, 10.1016/j.cell.2004.12.038
Gebauer, 2004, Molecular mechanisms of translational control, Nat. Rev. Mol. Cell Biol., 5, 827, 10.1038/nrm1488
Richter, 2005, Regulation of cap-dependent translation by eIF4E inhibitory proteins, Nature, 433, 477, 10.1038/nature03205
Sarnow, 2005, Takeover of host ribosomes by divergent IRES elements, Biochem. Soc. Trans., 33, 1479, 10.1042/BST20051479
Pestova, 2001, Molecular mechanisms of translation initiation in eukaryotes, Proc. Natl. Acad. Sci. U. S. A., 98, 7029, 10.1073/pnas.111145798
Turner, 2000, Detecting and measuring cotranslational protein degradation in vivo, Science, 289, 2117, 10.1126/science.289.5487.2117
Coller, 2004, Eukaryotic mRNA decapping, Annu. Rev. Biochem., 73, 861, 10.1146/annurev.biochem.73.011303.074032
Teixeira, 2005, Processing bodies require RNA for assembly and contain nontranslating mRNAs, RNA, 11, 371, 10.1261/rna.7258505
Brengues, 2005, Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies, Science, 310, 486, 10.1126/science.1115791
Andrei, 2005, A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies, RNA, 11, 717, 10.1261/rna.2340405
Cougot, 2004, Cytoplasmic foci are sites of mRNA decay in human cells, J. Cell Biol., 165, 31, 10.1083/jcb.200309008
Sheth, 2003, Decapping and decay of messenger RNA occur in cytoplasmic processing bodies, Science, 300, 805, 10.1126/science.1082320
Kedersha, 2005, Stress granules and processing bodies are dynamically linked sites of mRNP remodeling, J. Cell Biol., 169, 871, 10.1083/jcb.200502088
Nottrott, 2006, Human let-7a miRNA blocks protein production on actively translating polyribosomes, Nat. Struct. Mol. Biol., 13, 1108, 10.1038/nsmb1173
Maroney, 2006, Evidence that microRNAs are associated with translating messenger RNAs in human cells, Nat. Struct. Mol. Biol., 13, 1102, 10.1038/nsmb1174
Leung, 2006, Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules, Proc. Natl. Acad. Sci. U. S. A., 103, 18125, 10.1073/pnas.0608845103
Jackson, R.J. and Standart, N. How do microRNAs regulate gene expression? Science (in press)