Repression of SIRT1 Promotes the Differentiation of Mouse Induced Pluripotent Stem Cells into Neural Stem Cells
Tóm tắt
The use of transplanting functional neural stem cells (NSCs) derived from induced pluripotent stem cells (iPSCs) has increased for the treatment of brain diseases. As such, it is important to understand the molecular mechanisms that promote NSCs differentiation of iPSCs for future NSC-based therapies. Sirtuin 1 (SIRT1), a NAD+-dependent protein deacetylase, has attracted significant attention over the past decade due to its prominent role in processes including organ development, longevity, and cancer. However, it remains unclear whether SIRT1 plays a role in the differentiation of mouse iPSCs toward NSCs. In this study, we produced NSCs from mouse iPSCs using serum-free medium supplemented with retinoic acid. We then assessed changes in the expression of SIRT1 and microRNA-34a, which regulates SIRT1 expression. Moreover, we used a SIRT1 inhibitor to investigate the role of SIRT1 in NSCs differentiation of iPSCs. Data revealed that the expression of SIRT1 decreased, whereas miRNAs-34a increased, during this process. In addition, the inhibition of SIRT1 enhanced the generation of NSCs and mature neurocytes. This suggests that SIRT1 negatively regulated the differentiation of mouse iPSCs into NSCs, and that this process may be regulated by miRNA-34a.
Tài liệu tham khảo
Agostini M, Tucci P, Killick R, Candi E, Sayan BS, di Val Rivetti-Cervo P, Nicotera P, McKeon F, Knight RA, Mak TW, Melino G (2011) Neuronal differentiation by TAp73 is mediated by microRNA-34a regulation of synaptic protein targets. Proc Natl Acad Sci USA 108(52):21093–21098. doi:10.1073/111206
Aranha MM, Santos DM, Sola S, Steer CJ, Rodrigues CM (2011) miR-34a regulates mouse neural stem cell differentiation. PLoS ONE 6(8):e21396. doi:10.1371/0021396
Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA (2002) Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 277(47):45099–45107. doi:10.1074/20567
Braidy N, Jayasena T, Poljak A, Sachdev PS (2012) Sirtuins in cognitive ageing and Alzheimer’s disease. Curr Opin Psychiatry 25(3):226–230. doi:10.1097/0b013e32835112c1
Calvanese V, Lara E, Suarez-Alvarez B, Abu-Dawud R, Vazquez-Chantada M, Martinez-Chantar ML, Embade N, Lopez-Nieva P, Horrillo A, Hmadcha A, Soria B, Piazzolla D, Herranz D, Serrano M, Mato JM, Andrews PW, Lopez-Larrea C, Esteller M, Fraga MF (2010) Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proc Natl Acad Sci USA 107(31):13736–13741. doi:10.1073/1001399107
Chang DJ, Lee N, Park IH, Choi C, Jeon I, Kwon J, Oh SH, Shin DA, Do JT, Lee DR, Lee H, Moon H, Hong KS, Daley GQ, Song J (2013) Therapeutic potential of human induced pluripotent stem cells in experimental stroke. Cell Transplant 22(8):1427–1440. doi:10.3727/0963689
Chen W, Bhatia R (2013) Roles of SIRT1 in leukemogenesis. Curr Opin Hematol 20(4):308–313. doi:10.1097/0b013e328360ab64
Chen J, Liu J, Han Q, Qin D, Xu J, Chen Y, Yang J, Song H, Yang D, Peng M, He W, Li R, Wang H, Gan Y, Ding K, Zeng L, Lai L, Esteban MA, Pei D (2010) Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells. J Biol Chem 285(40):31066–31072. doi:10.1074/110.139436
Chen J, Michan S, Juan AM, Hurst CG, Hatton CJ, Pei DT, Joyal JS, Evans LP, Cui Z, Stahl A, Sapieha P, Sinclair DA, Smith LE (2013) Neuronal sirtuin1 mediates retinal vascular regeneration in oxygen-induced ischemic retinopathy. Angiogenesis 16(4):985–992. doi:10.1007/10456
Cremisi F (2013) MicroRNAs and cell fate in cortical and retinal development. Front Cell Neurosci 7:141. doi:10.3389/2013.00141
Donmez G, Outeiro TF (2013) SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 5(3):344–352. doi:10.1002/201302451
Ito T, Yagi S, Yamakuchi M (2010) MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun 398(4):735–740. doi:10.1016/2010.07.012
Jackson MD, Schmidt MT, Oppenheimer NJ, Denu JM (2003) Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases. J Biol Chem 278(51):50985–50998. doi:10.1074/M306552200
Jensen MB, Yan H, Krishnaney-Davison R, Al-Sawaf A, Zhang SC (2013) Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model. J Stroke Cerebrovasc Dis 22(4):304–308. doi:10.1016/2011.09.008
Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP (2009) Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cell Dev 18(7):1093–1108. doi:10.1089/2009.0113
Kemper JK, Choi SE, Kim DH (2013) Sirtuin 1 deacetylase: a key regulator of hepatic lipid metabolism. Vitam Horm 91:385–404. doi:10.1016/978-0-12-407766-9.00016
Knight JR, Milner J (2012) SIRT1, metabolism and cancer. Curr Opin Oncol 24(1):68–75. doi:10.1097/0b013e32834d813b
Kobayashi Y, Okada Y, Itakura G, Iwai H, Nishimura S, Yasuda A, Nori S, Hikishima K, Konomi T, Fujiyoshi K, Tsuji O, Toyama Y, Yamanaka S, Nakamura M, Okano H (2012) Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS ONE 7(12):e52787. doi:10.1371/0052787
Lee J, Padhye A, Sharma A, Song G, Miao J, Mo YY, Wang L, Kemper JK (2010) A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem 285(17):12604–12611. doi:10.1074/M109.094524
Lee YL, Peng Q, Fong SW, Chen AC, Lee KF, Ng EH, Nagy A, Yeung WS (2012) Sirtuin 1 facilitates generation of induced pluripotent stem cells from mouse embryonic fibroblasts through the miR-34a and p53 pathways. PLoS ONE 7(9):e45633. doi:10.1371/0045633
Liao J, Wu Z, Wang Y, Cheng L, Cui C, Gao Y, Chen T, Rao L, Chen S, Jia N, Dai H, Xin S, Kang J, Pei G, Xiao L (2008) Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors. Cell Res 18(5):600–603. doi:10.1038/2008.51
Liu Y, Yao Z, Zhang L, Zhu H, Deng W, Qin C (2013) Insulin induces neurite outgrowth via SIRT1 in SH-SY5Y cells. Neuroscience 238:371–380. doi:10.1016/2013.01.034
Mathieu J, Ruohola-Baker H (2013) Regulation of stem cell populations by microRNAs. Adv Exp Med Biol 786:329–351. doi:10.1007/978-94-007-6621-1-18
Min SW, Sohn PD, Cho SH, Swanson RA (2013) Gan L (2013) Sirtuins in neurodegenerative diseases: an update on potential mechanisms. Front Aging Neurosci 5:53. doi:10.3389/00053
Prozorovski T, Schulze-Topphoff U, Glumm R, Baumgart J, Schroter F, Ninnemann O, Siegert E, Bendix I, Brustle O, Nitsch R, Zipp F, Aktas O (2008) Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 10(4):385–394. doi:10.1038/1700
Rodriguez-Ubreva J, Ciudad L, van Oevelen C, Parra M, Graf T, Ballestar E (2014) C/EBPa-mediated activation of micrornas 34a and 223 inhibits Lef1 expression to achieve efficient reprogramming into macrophages. Mol Cell Biol 34(6):1145–1157. doi:10.1128/01487-13
Roese-Koerner B, Stappert L, Koch P, Brustle O, Borghese L (2013) Pluripotent stem cell-derived somatic stem cells as tool to study the role of microRNAs in early human neural development. Curr Mol Med 13(5):707–722. doi:10.2174/1566524011313050003
Saharan S, Jhaveri DJ, Bartlett PF (2013) SIRT1 regulates the neurogenic potential of neural precursors in the adult subventricular zone and hippocampus. J Neurosci Res 91(5):642–659. doi:10.1002/23199
Sanchez-Danes A, Benzoni P, Memo M, Dell’era P, Raya A, Consiglio A (2013) Induced pluripotent stem cell-based studies of Parkinson’s disease: challenges and promises. CNS Neurol Disord 12(8):1114–1127. doi:10.2174/187152731131200128
Sauve AA, Schramm VL (2003) Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry 42(31):9249–9256. doi:10.1021/034959l
Stover AE, Brick DJ, Nethercott HE, Banuelos MG, Sun L, O’Dowd DK, Schwartz PH (2013) Process-based expansion and neural differentiation of human pluripotent stem cells for transplantation and disease modeling. J Neurosci Res 91(10):1247–1262. doi:10.1002/23245
Sundberg M, Bogetofte H, Lawson T, Jansson J, Smith G, Astradsson A, Moore M, Osborn T, Cooper O, Spealman R, Hallett P, Isacson O (2013) Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells 31(8):1548–1562. doi:10.1002/1415
Tabuchi T, Satoh M, Itoh T, Nakamura M (2012) MicroRNA-34a regulates the longevity-associated protein SIRT1 in coronary artery disease: effect of statins on SIRT1 and microRNA-34a expression. Clin Sci 123(3):161–171. doi:10.1042/20110563
Takata T, Ishikawa F (2003) Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1- and HEY2-mediated transcriptional repression. Biochem Biophys Res Commun 301(1):250–257. doi:10.1016/0006-291X(02)03020-6
Tanno M, Kuno A, Horio Y, Miura T (2012) Emerging beneficial roles of sirtuins in heart failure. Basic Res Cardiol 107(4):273. doi:10.1007/s00395-012-0273-5
Tarantino C, Paolella G, Cozzuto L, Minopoli G, Pastore L, Parisi S, Russo T (2010) miRNA 34a, 100, and 137 modulate differentiation of mouse embryonic stem cells. FASEB J 24(9):3255–3263. doi:10.1096/09-152207
Wang J, Chao F, Han F, Zhang G, Xi Q, Li J, Jiang H, Wang J, Yu G, Tian M, Zhang H (2013a) PET demonstrates functional recovery after transplantation of induced pluripotent stem cells in a rat model of cerebral ischemic injury. J Nucl Med 54(5):785–792. doi:10.2967/112.111112
Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, Maherali N, Studer L, Hochedlinger K, Windrem M, Goldman SA (2013b) Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12(2):252–264. doi:10.1016/2012.12.002
Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 105(15):5856–5861. doi:10.1073/0801677105
Xu L, Tan YY, Wu L, Wang LL, Li H, Ding JQ, Chen SD (2013) Road to future: iPSC clinical application in Parkinson’s disease treatment. Curr Mol Med 13(9):1412–1418. doi:10.2174/15665240113139990070
Yamakuchi M (2012) MicroRNA regulation of SIRT1. Front Physiol 3:68. doi:10.3389/2012.00068
Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 105(36):13421–13426. doi:10.1073/0801613105
Yuan H, Su L, Chen WY (2013a) The emerging and diverse roles of sirtuins in cancer: a clinical perspective. Onco Targets Ther 6:1399–1416. doi:10.2147/37750
Yuan T, Liao W, Feng NH, Lou YL, Niu X, Zhang AJ, Wang Y, Deng ZF (2013b) Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurological function in a rat model of middle cerebral artery occlusion. Stem Cell Res Ther 4(3):73. doi:10.1186/224
Zhang Y, Wang J, Chen G, Fan D, Deng M (2011) Inhibition of Sirt1 promotes neural progenitors toward motoneuron differentiation from human embryonic stem cells. Biochem Biophys Res Commun 404(2):610–614. doi:10.1016/2010.12.014
Zhao Y, Bhattacharjee S, Jones BM, Dua P, Alexandrov PN, Hill JM, Lukiw WJ (2013) Regulation of TREM2 expression by an NF-small ka, CyrillicB-sensitive miRNA-34a. NeuroReport 24(6):318–323. doi:10.1097/0b013e32835fb6b0