Representations, commutative algebra, and Hurwitz groups
Tài liệu tham khảo
Blinkov, 2003, The Maple package “Janet”: I. Polynomial systems, 31
Blinkov, 2001, Construction of Janet bases, II. Polynomial bases, 249
Bosma, 1997, The Magma algebra system I: The user language, J. Symbolic Comput., 24, 235, 10.1006/jsco.1996.0125
Cohen, 1981, On non-Hurwitz groups and noncongruence subgroups of the modular group, Glasgow Math. J., 22, 1, 10.1017/S0017089500004419
Di Martino, 2000, On Hurwitz groups of low rank, Comm. Algebra, 28, 5383, 10.1080/00927870008827163
Holt, 1989
Holt, 1997, Constructing a representation of the Group (2,3,7,11), J. Symbolic Comput., 24, 489, 10.1006/jsco.1996.0147
Janet, 1929, Leçons sur les systèmes des équationes aux dérivées partielles
Klaas, 1997, Linear Pro-p-Groups of Finite Width, vol. 1674
Leedham-Green, 2001, The computational matrix group project, vol. 8, 229
Lubotzky, 1985, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc., 58
Macbeath, 1969, Generators of linear fractional groups, vol. 12, 14
Macbeath, 1999, Hurwitz groups and surfaces, 103
Malle, 1990, Hurwitz groups and G2(q), Canad. Math. Bull., 33, 349, 10.4153/CMB-1990-059-8
Niemeyer, 1998, A recognition algorithm for classical groups over finite fields, Proc. London Math. Soc. (3), 77, 117, 10.1112/S0024611598000422
Plesken, 1997, Analyzing finitely presented groups by constructing representations, J. Symbolic Comput., 24, 335, 10.1006/jsco.1996.0131
Plesken, 2005, Janet's approach to presentations and resolutions for polynomials and linear pdes, Arch. Math., 84, 22, 10.1007/s00013-004-1282-x
Tamburini, 2006, Hurwitz groups and Hurwitz generation, 385, 10.1016/S1570-7954(06)80010-0
Tamburini, 2006, Irreducible (2,3,7)-subgroups of PGLn(F), n⩽7, J. Algebra, 300, 339, 10.1016/j.jalgebra.2006.02.030
Tamburini, 2004, Classical groups in dimension 5 which are Hurwitz, 363
R. Vincent, A.E. Zalesski, More non-Hurwitz classical groups, London Math. Soc. J. Comput. Math., in press
M. Vsemirnov, The groups G2(p) as quotients of (2,3,7;2p), Transform. Groups, in press, preprint: http://www.pdmi.ras.ru/preprint/2004/04-17.html