Representations, commutative algebra, and Hurwitz groups

Journal of Algebra - Tập 300 - Trang 223-247 - 2006
W. Plesken1, D. Robertz1
1Lehrstuhl B für Mathematik, RWTH Aachen, Templergraben 64, 52062, Aachen, Germany

Tài liệu tham khảo

Blinkov, 2003, The Maple package “Janet”: I. Polynomial systems, 31 Blinkov, 2001, Construction of Janet bases, II. Polynomial bases, 249 Bosma, 1997, The Magma algebra system I: The user language, J. Symbolic Comput., 24, 235, 10.1006/jsco.1996.0125 Cohen, 1981, On non-Hurwitz groups and noncongruence subgroups of the modular group, Glasgow Math. J., 22, 1, 10.1017/S0017089500004419 Di Martino, 2000, On Hurwitz groups of low rank, Comm. Algebra, 28, 5383, 10.1080/00927870008827163 Holt, 1989 Holt, 1997, Constructing a representation of the Group (2,3,7,11), J. Symbolic Comput., 24, 489, 10.1006/jsco.1996.0147 Janet, 1929, Leçons sur les systèmes des équationes aux dérivées partielles Klaas, 1997, Linear Pro-p-Groups of Finite Width, vol. 1674 Leedham-Green, 2001, The computational matrix group project, vol. 8, 229 Lubotzky, 1985, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc., 58 Macbeath, 1969, Generators of linear fractional groups, vol. 12, 14 Macbeath, 1999, Hurwitz groups and surfaces, 103 Malle, 1990, Hurwitz groups and G2(q), Canad. Math. Bull., 33, 349, 10.4153/CMB-1990-059-8 Niemeyer, 1998, A recognition algorithm for classical groups over finite fields, Proc. London Math. Soc. (3), 77, 117, 10.1112/S0024611598000422 Plesken, 1997, Analyzing finitely presented groups by constructing representations, J. Symbolic Comput., 24, 335, 10.1006/jsco.1996.0131 Plesken, 2005, Janet's approach to presentations and resolutions for polynomials and linear pdes, Arch. Math., 84, 22, 10.1007/s00013-004-1282-x Tamburini, 2006, Hurwitz groups and Hurwitz generation, 385, 10.1016/S1570-7954(06)80010-0 Tamburini, 2006, Irreducible (2,3,7)-subgroups of PGLn(F), n⩽7, J. Algebra, 300, 339, 10.1016/j.jalgebra.2006.02.030 Tamburini, 2004, Classical groups in dimension 5 which are Hurwitz, 363 R. Vincent, A.E. Zalesski, More non-Hurwitz classical groups, London Math. Soc. J. Comput. Math., in press M. Vsemirnov, The groups G2(p) as quotients of (2,3,7;2p), Transform. Groups, in press, preprint: http://www.pdmi.ras.ru/preprint/2004/04-17.html