Representations and Cocycle Twists of Color Lie Algebras
Tóm tắt
Từ khóa
Tài liệu tham khảo
Artin, M., Schelter, W., Tate, J.: Quantum deformations of $GL_{\,n}$ . Comm. Pure Appl. Math. XLIV, 879–895 (1990)
Drozd, Yu. A., Kirichenko, V.V.: Finite Dimensional Algebras. Springer, Berlin, Heidelberg, New York (1993)
Gorodnii, M. F., Podkolzin, G. B.: Irreducible representations of a graded Lie algebra, in Spectral theory of Operators and infinite-dimensional Analysis, Inst. Math. Acad. Sci. UkrSSR, Kiev, pp. 66–76. (1984)
Hu, N.H.: Quantum group structure associated to the quantum affine space, preprint (2004)
Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, Graduate Texts in Math., vol. 9. Springer, Berlin Heidelberg New York (1972)
Karpilovsky, G.: Projective Representations of Finite Groups, Monographs in Pure and Applied Math., vol. 94. Marcel Dekker, New York (1985)
Kharchenko, V.K.: An algebra of skew primitive elements, math.QA/0006077
Kraft, H., Small, L.W.: Invariant algebras and completely reducible representations. Math. Res. Lett. 1, 297–307 (1994)
Kraft, H., Small, L.W., Wallach, N.R.: Properties and examples of FCR-algebras. Manuscripta Math. 104, 443–450 (2001)
McConnell, J.C., Robson, J.C.: Noncommuative Noetherian Rings. Chichester, Wiley (1987)
Nǎstǎsescu, C., van Oystaeyen, F.: Dimension of Ring Theory, Mathematics and Its Applications. Reidel, Dordrecht, Holland (1987)
Nǎstǎsescu, C., van Oystaeyen, F.: Methods of Graded Rings, Lecture Notes in Math., vol. 1836. Springer, Berlin Heidelberg New York (2004)
Ostrovskyi, V.L., Silvestrov, S.D.: Representations of the real forms of a graded analogue of the Lie algebra $sl(2,\mathbb{C})$ . Ukr. Mat. Zhurn. 44(11), 1518–1524 (1992)