Representations and Cocycle Twists of Color Lie Algebras

X. W. Chen1,2, Sergei Silvestrov3, Freddy Van Oystaeyen2
1Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, PR China
2Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
3Centre for Mathematical Sciences, Department of Mathematics, Lund Institute of Technology, Lund University, Lund, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

Artin, M., Schelter, W., Tate, J.: Quantum deformations of $GL_{\,n}$ . Comm. Pure Appl. Math. XLIV, 879–895 (1990)

Drozd, Yu. A., Kirichenko, V.V.: Finite Dimensional Algebras. Springer, Berlin, Heidelberg, New York (1993)

Gorodnii, M. F., Podkolzin, G. B.: Irreducible representations of a graded Lie algebra, in Spectral theory of Operators and infinite-dimensional Analysis, Inst. Math. Acad. Sci. UkrSSR, Kiev, pp. 66–76. (1984)

Hu, N.H.: Quantum group structure associated to the quantum affine space, preprint (2004)

Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, Graduate Texts in Math., vol. 9. Springer, Berlin Heidelberg New York (1972)

Karpilovsky, G.: Projective Representations of Finite Groups, Monographs in Pure and Applied Math., vol. 94. Marcel Dekker, New York (1985)

Kharchenko, V.K.: An algebra of skew primitive elements, math.QA/0006077

Kirkman, E.E., Small, L.W.; Examples of FCR-algebras. Comm. Algebra 30(7), 3311–3326 (2002)

Kraft, H., Small, L.W.: Invariant algebras and completely reducible representations. Math. Res. Lett. 1, 297–307 (1994)

Kraft, H., Small, L.W., Wallach, N.R.: Properties and examples of FCR-algebras. Manuscripta Math. 104, 443–450 (2001)

McConnell, J.C., Robson, J.C.: Noncommuative Noetherian Rings. Chichester, Wiley (1987)

Nǎstǎsescu, C., van Oystaeyen, F.: Dimension of Ring Theory, Mathematics and Its Applications. Reidel, Dordrecht, Holland (1987)

Nǎstǎsescu, C., van Oystaeyen, F.: Methods of Graded Rings, Lecture Notes in Math., vol. 1836. Springer, Berlin Heidelberg New York (2004)

Ostrovskyi, V.L., Silvestrov, S.D.: Representations of the real forms of a graded analogue of the Lie algebra $sl(2,\mathbb{C})$ . Ukr. Mat. Zhurn. 44(11), 1518–1524 (1992)

Rittenberg, V., Wyler, D.: Generalized superalgebras. Nuclear Phys. B 139, 189–202 (1978)

Scheunert, M.: Generalized Lie algebras. J. Math. Phys. 20, 712–720 (1979)

Scheunert, M.: The Theory of Lie Superalgebras, Lecture Notes in Math., vol. 716. Springer, Berlin Heidelberg New York (1979)