Representation of heterostructure electrically doped nanoscale tunnel FET with Gaussian-doping profile for high-performance low-power applications

International Nano Letters - Tập 8 - Trang 277-286 - 2018
Maryam Abedini1, Seyed Ali Sedigh Ziabari1, Abdollah Eskandarian1
1Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran

Tóm tắt

In this paper, a gallium antimonide junctionless tunnel field-effect transistor based on electrically doped concept (GaSb–EDTFET) is studied and simulated. The performance of the device is analyzed based on the energy band diagram and electric field profile. The on-current, transconductance, and cut-off frequency are enhanced in case of GaSb–EDTFET compared with Si-EDTFET due to the combination of the high tunneling efficiency of the narrow bandgap and the high-electron mobility of GaSb. On the other hand, the Gaussian-doping profile decreases the ambipolar and off current by increasing the tunneling barrier length at the drain/channel interface. Hence, applying Gaussian-doping profile on GaSb–EDTFET makes it a suitable candidate for analog and digital applications. Next, heterostructure channel/source interface EDTFET is studied which uses GaSb for the source and AlGaSb for the drain and channel regions. Then, it has been optimized by numerical simulation in terms of aluminum (Al) composition. The optimal Al composition was founded to be around 10% (x = 0.1). It is shown that the blend of Gaussian-doping profile and the heterostructure channel/source interface with optimal Al composition remarkably reduces ambipolar current amount to a value of 1.3 × 10−23 A/μm. The improvements in terms of Ioff, Ion, Ion/Ioff rate, subthreshold swing, transconductance, cut-off frequency, and also suppressed ambipolar behavior are illustrated by numerical simulations.

Tài liệu tham khảo

Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Dev. 54(7), 1725–1733 (2007) Pal, A., Dutta, A.K.: Analytical drain current modeling of double-gate tunnel field-effect transistors. IEEE Trans. Electron Dev. 63(8), 3213–3221 (2016) Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–338 (2011) Colinge, J.P.: FinFETs and Other Multi-gate Transistors, vol. 73. Springer, New York (2008) Kim, S.H., Yokoyama, M., Nakane, R., Ichikawa, O., Osada, T., Hata, M., Takenaka, M., Takagi, S.: High performance tri-gate extremely thin-body InAs-on-insulator MOSFETs with high short channel effect immunity and V th tunability. IEEE Trans. Electron Dev. 61(5), 1354–1360 (2014) Sharma, D., Vishvakarma, S.K.: Precise analytical model for short-channel quadruple-gate gate-all-around MOSFET. IEEE Trans. Nanotechnol. 12(3), 378–385 (2013) Colinge, J.P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O’neill, B., Blake, A., White, M., Kelleher, A.M.: Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010) Bhuwalka, K.K., Schulze, J., Eisele, I.: Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering. IEEE Trans. Electron Dev. 52(5), 909–917 (2005) Nirschl, T., Fischer, J., Fulde, M., Bargagli-Stoffi, A., Sterkel, M., Sedlmeir, J., Weber, C., Heinrich, R., Schaper, U., Einfeld, J., Neubert, R.: Scaling properties of the tunneling field effect transistor (TFET): device and circuit. Solid-State Electr. 50(1), 44–51 (2006) Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Dev. Lett. 27(4), 297–300 (2006) Wang, P.F., Hilsenbeck, K., Nirschl, T., Oswald, M., Stepper, C., Weis, M., Schmitt-Landsiedel, D., Hansch, W.: Complementary tunneling transistor for low power application. Solid-State Electr. 48(12), 2281–2286 (2004) Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Dev. Lett. 28(8), 743–745 (2007) Kao, K.H., Verhulst, A.S., Vandenberghe, W.G., Soree, B., Groeseneken, G., De Meyer, K.: Direct and indirect band-to-band tunneling in germanium-based TFETs. IEEE Trans. Electron Dev. 59(2), 292–301 (2012) Yadav, D.S., Sharma, D., Raad, B.R., Bajaj, V.: Impactful study of dual work function, underlap and hetero gate dielectric on TFET with different drain doping profile for high frequency performance estimation and optimization. Superlattices Microstruct. 96, 36–46 (2016) Rahi, S.B., Asthana, P., Gupta, S.: Heterogate junctionless tunnel field-effect transistor: future of low-power devices. J. Comput. Electron. 16(1), 30–38 (2017) Abdi, D.B., Kumar, M.J.: Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE J. Electron Dev. Soc. 2(6), 187–190 (2014) Vladimirescu, A., Amara, A., Anghel, C.: An analysis on the ambipolar current in Si double-gate tunnel FETs. Solid-State Electr. 70, 67–72 (2012) Nigam, K., Sharma, D.: Approach for ambipolar behaviour suppression in tunnel FET by workfunction engineering. Micro Nano Lett. 11(8), 460–464 (2016) Madan, J., Chaujar, R.: Gate drain underlapped-PNIN-GAA-TFET for comprehensively upgraded analog/RF performance. Superlattices Microstruct. 102, 17–26 (2017) Ilatikhameneh, H., Ameen, T.A., Klimeck, G., Appenzeller, J., Rahman, R.: Dielectric engineered tunnel field-effect transistor. IEEE Electron Dev. Lett. 36(10), 1097–1100 (2015) Vijayvargiya, V., Vishvakarma, S.K.: Effect of drain doping profile on double-gate tunnel field-effect transistor and its influence on device RF performance. IEEE Trans. Nanotechnol. 13, 974–981 (2014) Raad, B., Nigam, K., Sharma, D., Kondekar, P.: Dielectric and work function engineered TFET for ambipolar suppression and RF performance enhancement. Electron. Lett. 52(9), 770–772 (2016) Ghosh, B., Bal, P., Mondal, P.: A junctionless tunnel field effect transistor with low subthreshold slope. J. Comput. Electron. 12(3), 428–436 (2013) Goswami, Y., Ghosh, B., Asthana, P.K.: Analog performance of Si junctionless tunnel field effect transistor and its improvisation using III–V semiconductor. RSC Adv. 4(21), 10761–10765 (2014) Ghosh, B., Akram, M.W.: Junctionless tunnel field effect transistor. IEEE Electron Dev. Lett. 34(5), 584–586 (2013) Anand, S., Amin, S.I., Sarin, R.K.: Performance analysis of charge plasma based dual electrode tunnel FET. J. Semicond. 37(5), 054003 (2016) Rahi, S.B., Ghosh, B.: High-k double gate junctionless tunnel FET with a tunable bandgap. RSC Adv. 5(67), 54544–54550 (2015) Nigam, K., Pandey, S., Kondekar, P.N., Sharma, D., Parte, P.K.: A barrier controlled charge plasma-based TFET with gate engineering for ambipolar suppression and RF/linearity performance improvement. IEEE Trans. Electron Dev. 64(6), 2751–2757 (2017) Akram, M.W., Ghosh, B., Bal, P., Mondal, P.: P-type double gate junctionless tunnel field effect transistor. J. Semicond. 35(1), 014002 (2014) Nigam, K., Pandey, S., Kondekar, P., Sharma, D., Verma, M., Gedam, A.: Performance estimation of polarity controlled electrostatically doped tunnel field-effect transistor. Micro Nano Lett. 12(4), 239–244 (2017) Nigam, K., Kondekar, P., Sharma, D., Raad, B.R.: A new approach for design and investigation of junction-less tunnel FET using electrically doped mechanism. Superlattices Microstruct. 98, 1–7 (2016) Lahgere, A., Sahu, C., Singh, J.: Electrically doped dynamically configurable field-effect transistor for low-power and high-performance applications. Electron. Lett. 51(16), 1284–1286 (2015) Anand, S., Sarin, R.K.: Analog and RF performance of doping-less tunnel FETs with Si0.55Ge0.45 source. J. Comput. Electron. 15(3), 850–856 (2016) Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Dev. 60(10), 3285–3290 (2013) Cecil, K., Singh, J.: Influence of Germanium source on dopingless tunnel-FET for improved analog/RF performance. Superlattices Microstruct. 101, 244–252 (2017) Thathachary, A.V., Agrawal, N., Liu, L., Datta, S.: Electron transport in multigate Inx Ga1–xAs nanowire FETs: from diffusive to ballistic regimes at room temperature. Nano Lett. 14(2), 626–633 (2014) Lahgere, A., Panchore, M., Singh, J.: Dopingless ferroelectric tunnel FET architecture for the improvement of performance of dopingless n-channel tunnel FETs. Superlattices Microstruct. 96, 16–25 (2016) Abadi, R.M.I., Ziabari, S.A.S.: Representation of type I heterostructure junctionless tunnel field effect transistor for high-performance logic application. Appl. Phys. A 122(6), 616 (2016) Rahi, S.B., Ghosh, B., Bishnoi, B.: Temperature effect on hetero structure junctionless tunnel FET. J. Semicond. 36(3), 034002 (2015) Asthana, P.K., Goswami, Y., Basak, S., Rahi, S.B., Ghosh, B.: Improved performance of a junctionless tunnel field effect transistor with a Si and SiGe heterostructure for ultra low power applications. RSC Adv. 5(60), 48779–48785 (2015) Gundapaneni, S., Konar, A., Bajaj, M., Murali, K.: Improved performance of junctionless tunnel FETs with source/channel heterostructure. In: Jain, V., Verma, A. (eds.) Physics of Semiconductor Devices. Environmental Science and Engineering, pp. 289–290. Springer, Cham (2013) Cecil, K., Singh, J.: Performance enhancement of dopingless tunnel-FET based on Ge-source with high-k. IEEE International Symposium on Nanoelectronic and Information Systems, pp.19–22 (2015) Tirkey, S., Nigam, K., Pandey, S., Sharma, D., Kondekar, P.: Investigation of gate material engineering in junctionless TFET to overcome the trade-off between ambipolarity and RF/linearity metrics. Superlattices Microstruct. 109, 307–315 (2017) Abadi, R.M.I., Ziabari, S.A.S.: Improved performance of nanoscale junctionless tunnel field-effect transistor based on gate engineering approach. Appl. Phys. A. 122(11), 988 (2016) Bal, P., Ghosh, B., Mondal, P., Akram, M.W., Tripathi, B.M.M.: Dual material gate junctionless tunnel field effect transistor. J. Comput. Electr. 13(1), 230–234 (2014) Bashir, F., Loan, S.A., Rafat, M., Alamoud, A.R.M., Abbasi, S.A.: A high performance gate engineered charge plasma based tunnel field effect transistor. J. Comput. Electron. 14(2), 477–485 (2015) Rahimian, M., Fathipour, M.: Improvement of electrical performance in junctionless nanowire TFET using hetero-gate-dielectric. Mater. Sci. Semicond. Process. 63, 142–152 (2017) Anand, S., Sarin, R.K.: Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance. J. Semicond. 38(2), 024001 (2017) Raad, B.R., Nigam, K., Sharma, D., Kondekar, P.N.: Performance investigation of bandgap, gate material work function and gate dielectric engineered TFET with device reliability improvement. Superlattices Microstruct. 94, 138–146 (2016) Ram, M.S., Abdi, D.B.: Dopingless PNPN tunnel FET with improved performance: design and analysis. Superlattices Microstruct. 82, 430–437 (2015) Goswami, Y., Asthana, P., Basak, S., Ghosh, B.: Junctionless tunnel field effect transistor with nonuniform doping. Int. J. Nanosci. 14(03), 1450025 (2015) Aghandeh, H., Ziabari, S.A.S.: Gate engineered heterostructure junctionless TFET with Gaussian doping profile for ambipolar suppression and electrical performance improvement. Superlattices Microstruct. 111, 103–114 (2017) Ahish, S., Sharma, D., Vasantha, M.H., Kumar, Y.B.N.: Device and circuit level performance analysis of novel InAs/Si heterojunction double gate tunnel field effect transistor. Superlattices Microstruct. 94, 119–130 (2016) Visciarelli, M., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Impact of strain on tunneling current and threshold voltage in III–V nanowire TFETs. IEEE Electron Dev. Lett. 37(5), 560–563 (2016) Abadi, R.M.I., Ziabari, S.A.S.: Representation of strained gate-all-around junctionless tunneling nanowire filed effect transistor for analog applications. Microelectron. Eng. 162, 12–16 (2016) Yadav, D.S., Verma, A., Sharma, D., Tirkey, S., Raad, B.R.: Comparative investigation of novel hetero gate dielectric and drain engineered charge plasma TFET for improved DC and RF performance. Superlattices Microstruct. 111, 123–133 (2017) Yadav, D.S., Raad, B.R., Sharma, D.: A novel gate and drain engineered charge plasma tunnel field-effect transistor for low sub-threshold swing and ambipolar nature. Superlattice Microstruct 100(266), 266–273 (2016) Yogesh, G., Pranav, A., Bahniman, G.: Nanoscale III–V on Si-based junctionless tunnel transistor for EHF band applications. Nanoscale 38(5), 054002 (2017) Chin, V.W.L.: Electron mobility in GaSb. Solid-State Electr. 38(1), 59–67 (1995) Silvaco Inc.: Atlas User’s Manual. Silvaco Inc., Santa Clara (2017) Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley (2007) Asthana, P.K., Ghosh, B., Rahi, S.B.M., Goswami, Y.: Optimal design for a high performance H-JLTFET using hfo2 as a gate dielectric for ultra low power applications. RSC Adv. 4(43), 22803–22807 (2014)