Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô hình sai số đo lường lặp lại dưới các ràng buộc tuyến tính chính xác
Tóm tắt
Chúng tôi xem xét một mô hình hồi quy sai số đo lường siêu cấu trúc lặp lại trong đó các biến dự đoán được quan sát với sai số. Giả thiết rằng có một số thông tin trước về các hệ số hồi quy dưới dạng các ràng buộc tuyến tính chính xác. Chúng tôi đề xuất ba loại ước lượng cho các hệ số hồi quy. Các ước lượng này được chứng minh là nhất quán và thỏa mãn các ràng buộc đã cho. Các thuộc tính tiệm cận của các ước lượng không bị ràng buộc cũng như bị ràng buộc được nghiên cứu mà không đưa ra bất kỳ giả định phân phối nào về bất kỳ thành phần ngẫu nhiên nào của mô hình. Một nghiên cứu mô phỏng Monte Carlo được thực hiện để đánh giá tác động của kích thước mẫu, số lần lặp lại và tính không chuẩn đến các ước lượng.
Từ khóa
#mô hình hồi quy #sai số đo lường #ràng buộc tuyến tính #ước lượng thống kê #mô phỏng Monte CarloTài liệu tham khảo
Chan KL, Mak TK (1979) Maximum likelihood estimation of a linear structural relationship with replication. J R Stat Soc B 41: 263–268
Cheng CL, Van Ness JW (1999) Statistical regression with measurement errors. Arnold Publishers London, UK
Cheng CL, Kukush A (2006) Non-existence of the first moment of the adjusted least squares estimator in multivariate errors in variables model. Metrika 64: 41–46
Chipman JS, Rao MM (1964) The treatment of linear restrictions in regression analysis. Econometrica 32: 198–209
Devanarayan V, Stefanski LA (2002) Empirical simulation extrapolation for measurement error models with replicate measurements. Stat Prob Lett 59: 219–225
Dolby GR (1976) The ultrastructural relation : a synthesis of the functional and structural relations. Biometrika 63: 39–50
Fuller WA (1987) Measurement error models. Wiley, New York
Gleser LJ (1992) The importance of assessing measurement reliability in multivariate regression. J Am Stat Assoc 87(419): 696–707
Gleser LJ (1993) Estimators of slopes in linear errors-in-variables regression models when the predictors have known reliability matrix. Stat Prob Lett 17: 113–121
Hsiao C, Wang L, Wang Q (1997) Estimation of nonlinear errors-in-variables models: an approximate solution. Stat Papers 38: 1–25
Isogawa Y (1985) Estimating a multivariate linear structural relationship with replication. J R Stat Soc B 47: 211–215
Jain K, Singh S, Sharma S (2011) Restricted estimation in multivariate measurement error regression model. J Multivar Anal 102: 264–280
Kleeper S, Leamer EE (1984) Consistent set of estimates for regressions with errors in all variables. Econometrica 52: 163–183
Malinvaud E (1966) Statistical methods of econometrics. North-Holland Publishing Co., Amsterdam
Rao CR, Rao MB (1998) Matrix algebra and its applications to statistics and econometrics. World Scientific
Rao CR, Toutenburg H, Shalabh , Heumann C (2008) Linear models and generalizations : least squares and alternatives, 3rd edn. Springer, Berlin
Richardson DH, Wu D (1970) Least squares and grouping method estimators in the errors in variables model. J Am Stat Assoc 65(330): 724–748
Schneeweiss H (1976) Consistent estimation of a regression with errors in the variables. Metrika 23: 101–115
Schafer DW, Purdy KG (1996) Likelihood analysis for errors in variables regression with replicate measurements. Biometrika 83: 813–824
Shalabh (1998) Improved estimation in measurement error models through stein-rule procedure. J Multivar Anal 67:35–48 (Corrigendum (2000) J Multivar Anal 74:162
Shalabh KG (2003) Consistent estimation of coefficients in measurement error models with replicated observations. J Multivar Anal 86: 227–241
Shalabh , Garg G, Misra N (2007) Restricted regression estimation in measurement error models. Comput Stat Data Anal 52: 1149–1166
Shalabh , Garg G, Misra N (2009) Use of prior information in the consistent estimation of regression coefficients in measurement error models. J Multivar Anal 100: 1498–1520
Shalabh , Paudel CM, Kumar N (2009) Consistent estimation of regression parameters under replicated ultrastructural model with non normal errors. J Stat Comp Sim 79(3): 251–274
Shalabh , Garg G, Misra N (2010) Consistent estimation of regression coefficients in ultrastructural measurement error model using stochastic prior information. Stat Papers 51: 717–748
Thoresen M, Laake P (2003) The use of replicates in logistic measurement error modelling. Scand J Stat 30: 625–636
Ullah A, Shalabh , Mukherjee D (2001) Consistent estimation of regression coefficients in replicated data with non-normal measurement errors. Ann Econ Finance 2: 249–264
Wang N, Carroll RJ, Liang KY (1996) Quasilikelihood estimation in measurement error models with correlated replicates. Biometrics 52: 401–411
Yam BJ (1985) Asymptotic properties of the OLS and GRLS estimators for the replicated functional relationship model. Commun Stat Theory Methods 14: 1981–1996
You J, Zhou X, Zhu L, Zhou B (2011) Weighted denoised minimum distance estimation in a regression model with autocorrelated measurement errors. Stat Papers 52: 263–286