Replacement of heme by soluble guanylate cyclase (sGC) activators abolishes heme-nitric oxide/oxygen (H-NOX) domain structural plasticity
Tài liệu tham khảo
Alderson, 2020, Unveiling invisible protein states with NMR spectroscopy, Curr. Opin. Struct. Biol., 60, 39, 10.1016/j.sbi.2019.10.008
Alexandropoulos, 2016, 1 H, 13 C, 15 N backbone and side-chain resonance assignment of Nostoc sp. C139A variant of the heme–nitric oxide/oxygen binding (H-NOX) domain, Biomol. NMR Assign., 10, 395, 10.1007/s12104-016-9707-6
Breitenstein, 2016, Novel sGC stimulators and sGC activators for the treatment of heart failure, Handb. Exp. Pharmacol., 243, 225, 10.1007/164_2016_100
Case, 2018
Chester, 2011, Cinaciguat, a soluble guanylate cyclase activator, augments cGMP after oxidative stress and causes pulmonary vasodilation in neonatal pulmonary hypertension, Am. J. Physiol. Lung Cell Mol. Physiol., 301, 755, 10.1152/ajplung.00138.2010
Dang, 2020, cGMP signaling in cardiovascular diseases: linking genotype and phenotype, J. Cardiovasc. Pharmacol., 75, 516, 10.1097/FJC.0000000000000744
Darden, 1993, Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems, J. Chem. Phys., 98
Dasgupta, 2015, Soluble guanylate cyclase: a new therapeutic target for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension, Clin. Pharmacol. Ther., 97, 88, 10.1002/cpt.10
Eisenmesser, 2002, Enzyme dynamics during catalysis, Science, 295, 1520, 10.1126/science.1066176
Evgenov, 2006, NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential, Nat. Rev. Drug Discov., 5, 755, 10.1038/nrd2038
Follmann, 2013, The chemistry and biology of soluble guanylate cyclase stimulators and activators, Angew Chem. Int. Ed. Engl., 52, 9442, 10.1002/anie.201302588
Gheorghiade, 2013, Soluble guanylate cyclase: a potential therapeutic target for heart failure, Heart Fail. Rev., 18, 123, 10.1007/s10741-012-9323-1
Ghofrani, 2013, Riociguat for the treatment of chronic thromboembolic pulmonary hypertension, N. Engl. J. Med., 369, 319, 10.1056/NEJMoa1209657
Ghosh, 2014, Nitric oxide and heat shock protein 90 activate soluble guanylate cyclase by driving rapid change in its subunit interactions and heme content, J. Biol. Chem., 289, 15259, 10.1074/jbc.M114.559393
Ghosh, 2017, Regulation of sGC via hsp90, cellular heme, sGC agonists, and NO: new pathways and clinical perspectives, Antioxidants Redox Signal., 26, 82, 10.1089/ars.2016.6690
Haramis, 2008, cGMP-independent anti-tumour actions of the inhibitor of soluble guanylyl cyclase, ODQ, in prostate cancer cell lines, Br. J. Pharmacol., 155, 804, 10.1038/bjp.2008.312
Hoffmann, 2009, Distinct molecular requirements for activation or stabilization of soluble guanylyl cyclase upon haem oxidation-induced degradation, Br. J. Pharmacol., 157, 781, 10.1111/j.1476-5381.2009.00263.x
Holt, 2016, Soluble guanylyl cyclase-activated cyclic GMP dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation, Cell. Signal., 28, 1364, 10.1016/j.cellsig.2016.06.012
Humphrey, 1996, VMD: visual molecular dynamics, J. Mol. Graph., 14, 33, 10.1016/0263-7855(96)00018-5
Jakalian, 2002, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation, J. Comput. Chem., 23, 1623, 10.1002/jcc.10128
Keller, 2004, 30, 2011
Kollau, 2018, Irreversible activation and stabilization of soluble guanylate cyclase by the protoporphyrin IX mimetic cinaciguat, Mol. Pharmacol., 93, 73, 10.1124/mol.117.109918
Kumar, 2013, Insights into BAY 60-2770 activation and S-nitrosylation-dependent desensitization of soluble guanylyl cyclase via crystal structures of homologous nostoc H-NOX domain complexes, Biochemistry, 52, 3601, 10.1021/bi301657w
Li, 2016, MCPB.py: a Python based metal center parameter builder, J. Chem. Inf. Model., 56, 599, 10.1021/acs.jcim.5b00674
Liu, 2021, Activation mechanism of human soluble guanylate cyclase by stimulators and activators, Nat. Commun., 12
Ma, 2007, NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism, EMBO J., 26, 578, 10.1038/sj.emboj.7601521
Maier, 2015, ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB, J. Chem. Theor. Comput., 11, 3696, 10.1021/acs.jctc.5b00255
Makrynitsa, 2021, Backbone and side chain NMR assignments of the H-NOX domain from Nostoc sp. in complex with BAY58-2667 (cinaciguat), Biomol. NMR Assign., 15, 53, 10.1007/s12104-020-09982-3
Makrynitsa, 2019, Therapeutic targeting of the soluble guanylate cyclase, Curr. Med. Chem., 26, 2730, 10.2174/0929867326666190108095851
Martin, 2010, Structure of cinaciguat (BAY 58–2667) bound to Nostoc H-NOX domain reveals insights into heme-mimetic activation of the soluble guanylyl cyclase, J. Biol. Chem., 285, 22651, 10.1074/jbc.M110.111559
Mittendorf, 2009, Discovery of riociguat (BAY 63-2521): a potent, oral stimulator of soluble guanylate cyclase for the treatment of pulmonary hypertension, ChemMedChem, 4, 853, 10.1002/cmdc.200900014
Papapetropoulos, 2015, Extending the translational potential of targeting NO/cGMP-regulated pathways in the CVS, Br. J. Pharmacol., 172, 1397, 10.1111/bph.12980
Pettersen, 2004, UCSF Chimera—a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084
Prompers, 2002, General framework for studying the dynamics of folded and non folded proteins by NMR relaxation spectroscopy and MD simulation, J. Am. Chem. Soc., 124, 4522, 10.1021/ja012750u
Roe, 2013, PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data, J. Chem. Theor. Comput., 9, 3084, 10.1021/ct400341p
Ryckaert, 1977, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. Comput. Phys., 23, 327, 10.1016/0021-9991(77)90098-5
Sandner, 2021, Soluble guanylate cyclase stimulators and activators, Hand. Εxp. Pharmacol., 264, 355, 10.1007/164_2018_197
Schindler, 2006, Biochemistry and pharmacology of novel anthranilic acid derivatives activating heme-oxidized soluble guanylyl cyclase, Mol. Pharmacol., 69, 1260, 10.1124/mol.105.018747
Sömmer, 2018, BAY 60–2770 activates two isoforms of nitric oxide sensitive guanylyl cyclase: evidence for stable insertion of activator drug, Biochem. Pharmacol., 147, 10, 10.1016/j.bcp.2017.11.010
Stasch, 2006, Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels, J. Clin. Invest., 116, 2552, 10.1172/JCI28371
Stuehr, 2021, Maturation, inactivation, and recovery mechanisms of soluble guanylyl cyclase, J. Biol. Chem., 296, 10.1016/j.jbc.2021.100336
da Silva, 2012, ACPYPE - AnteChamber PYthon parser interfacE, BMC Res. Notes, 5, 367, 10.1186/1756-0500-5-367
Vallurupalli, 2012, Studying “invisible” excited protein states in slow exchange with a major state conformation, J. Am. Chem. Soc., 134, 8148, 10.1021/ja3001419
Wang, 2004, Development and testing of a general amber force field, J. Comput. Chem., 25, 1157, 10.1002/jcc.20035
Williamson, 2013, Using chemical shift perturbation to characterise ligand binding, Prog. Nucl. Magn. Reson. Spectrosc., 73, 1, 10.1016/j.pnmrs.2013.02.001
Wittenborn, 2021, Structural perspectives on the mechanism of soluble guanylate cyclase activation, Int. J. Mol. Sci., 22, 5439, 10.3390/ijms22115439
Zhou, 2008, Soluble guanylyl cyclase activation by HMR-1766 (ataciguat) in cells exposed to oxidative stress, Am. J. Physiol. Heart Circ. Physiol., 295, 1763, 10.1152/ajpheart.51.2008
