Replacement of heme by soluble guanylate cyclase (sGC) activators abolishes heme-nitric oxide/oxygen (H-NOX) domain structural plasticity

Current Research in Structural Biology - Tập 3 - Trang 324-336 - 2021
Aikaterini I. Argyriou1, Garyfallia I. Makrynitsa1, Georgios Dalkas1, Dimitra A. Georgopoulou1, Konstantinos Salagiannis2, Vassiliki Vazoura2, Andreas Papapetropoulos3, Stavros Topouzis2, Georgios A. Spyroulias1
1Department of Pharmacy, University of Patras, GR-26504 Patras, Greece
2Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504, Patras, Greece
3Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece

Tài liệu tham khảo

Alderson, 2020, Unveiling invisible protein states with NMR spectroscopy, Curr. Opin. Struct. Biol., 60, 39, 10.1016/j.sbi.2019.10.008 Alexandropoulos, 2016, 1 H, 13 C, 15 N backbone and side-chain resonance assignment of Nostoc sp. C139A variant of the heme–nitric oxide/oxygen binding (H-NOX) domain, Biomol. NMR Assign., 10, 395, 10.1007/s12104-016-9707-6 Breitenstein, 2016, Novel sGC stimulators and sGC activators for the treatment of heart failure, Handb. Exp. Pharmacol., 243, 225, 10.1007/164_2016_100 Case, 2018 Chester, 2011, Cinaciguat, a soluble guanylate cyclase activator, augments cGMP after oxidative stress and causes pulmonary vasodilation in neonatal pulmonary hypertension, Am. J. Physiol. Lung Cell Mol. Physiol., 301, 755, 10.1152/ajplung.00138.2010 Dang, 2020, cGMP signaling in cardiovascular diseases: linking genotype and phenotype, J. Cardiovasc. Pharmacol., 75, 516, 10.1097/FJC.0000000000000744 Darden, 1993, Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems, J. Chem. Phys., 98 Dasgupta, 2015, Soluble guanylate cyclase: a new therapeutic target for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension, Clin. Pharmacol. Ther., 97, 88, 10.1002/cpt.10 Eisenmesser, 2002, Enzyme dynamics during catalysis, Science, 295, 1520, 10.1126/science.1066176 Evgenov, 2006, NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential, Nat. Rev. Drug Discov., 5, 755, 10.1038/nrd2038 Follmann, 2013, The chemistry and biology of soluble guanylate cyclase stimulators and activators, Angew Chem. Int. Ed. Engl., 52, 9442, 10.1002/anie.201302588 Gheorghiade, 2013, Soluble guanylate cyclase: a potential therapeutic target for heart failure, Heart Fail. Rev., 18, 123, 10.1007/s10741-012-9323-1 Ghofrani, 2013, Riociguat for the treatment of chronic thromboembolic pulmonary hypertension, N. Engl. J. Med., 369, 319, 10.1056/NEJMoa1209657 Ghosh, 2014, Nitric oxide and heat shock protein 90 activate soluble guanylate cyclase by driving rapid change in its subunit interactions and heme content, J. Biol. Chem., 289, 15259, 10.1074/jbc.M114.559393 Ghosh, 2017, Regulation of sGC via hsp90, cellular heme, sGC agonists, and NO: new pathways and clinical perspectives, Antioxidants Redox Signal., 26, 82, 10.1089/ars.2016.6690 Haramis, 2008, cGMP-independent anti-tumour actions of the inhibitor of soluble guanylyl cyclase, ODQ, in prostate cancer cell lines, Br. J. Pharmacol., 155, 804, 10.1038/bjp.2008.312 Hoffmann, 2009, Distinct molecular requirements for activation or stabilization of soluble guanylyl cyclase upon haem oxidation-induced degradation, Br. J. Pharmacol., 157, 781, 10.1111/j.1476-5381.2009.00263.x Holt, 2016, Soluble guanylyl cyclase-activated cyclic GMP dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation, Cell. Signal., 28, 1364, 10.1016/j.cellsig.2016.06.012 Humphrey, 1996, VMD: visual molecular dynamics, J. Mol. Graph., 14, 33, 10.1016/0263-7855(96)00018-5 Jakalian, 2002, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation, J. Comput. Chem., 23, 1623, 10.1002/jcc.10128 Keller, 2004, 30, 2011 Kollau, 2018, Irreversible activation and stabilization of soluble guanylate cyclase by the protoporphyrin IX mimetic cinaciguat, Mol. Pharmacol., 93, 73, 10.1124/mol.117.109918 Kumar, 2013, Insights into BAY 60-2770 activation and S-nitrosylation-dependent desensitization of soluble guanylyl cyclase via crystal structures of homologous nostoc H-NOX domain complexes, Biochemistry, 52, 3601, 10.1021/bi301657w Li, 2016, MCPB.py: a Python based metal center parameter builder, J. Chem. Inf. Model., 56, 599, 10.1021/acs.jcim.5b00674 Liu, 2021, Activation mechanism of human soluble guanylate cyclase by stimulators and activators, Nat. Commun., 12 Ma, 2007, NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism, EMBO J., 26, 578, 10.1038/sj.emboj.7601521 Maier, 2015, ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB, J. Chem. Theor. Comput., 11, 3696, 10.1021/acs.jctc.5b00255 Makrynitsa, 2021, Backbone and side chain NMR assignments of the H-NOX domain from Nostoc sp. in complex with BAY58-2667 (cinaciguat), Biomol. NMR Assign., 15, 53, 10.1007/s12104-020-09982-3 Makrynitsa, 2019, Therapeutic targeting of the soluble guanylate cyclase, Curr. Med. Chem., 26, 2730, 10.2174/0929867326666190108095851 Martin, 2010, Structure of cinaciguat (BAY 58–2667) bound to Nostoc H-NOX domain reveals insights into heme-mimetic activation of the soluble guanylyl cyclase, J. Biol. Chem., 285, 22651, 10.1074/jbc.M110.111559 Mittendorf, 2009, Discovery of riociguat (BAY 63-2521): a potent, oral stimulator of soluble guanylate cyclase for the treatment of pulmonary hypertension, ChemMedChem, 4, 853, 10.1002/cmdc.200900014 Papapetropoulos, 2015, Extending the translational potential of targeting NO/cGMP-regulated pathways in the CVS, Br. J. Pharmacol., 172, 1397, 10.1111/bph.12980 Pettersen, 2004, UCSF Chimera—a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084 Prompers, 2002, General framework for studying the dynamics of folded and non folded proteins by NMR relaxation spectroscopy and MD simulation, J. Am. Chem. Soc., 124, 4522, 10.1021/ja012750u Roe, 2013, PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data, J. Chem. Theor. Comput., 9, 3084, 10.1021/ct400341p Ryckaert, 1977, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. Comput. Phys., 23, 327, 10.1016/0021-9991(77)90098-5 Sandner, 2021, Soluble guanylate cyclase stimulators and activators, Hand. Εxp. Pharmacol., 264, 355, 10.1007/164_2018_197 Schindler, 2006, Biochemistry and pharmacology of novel anthranilic acid derivatives activating heme-oxidized soluble guanylyl cyclase, Mol. Pharmacol., 69, 1260, 10.1124/mol.105.018747 Sömmer, 2018, BAY 60–2770 activates two isoforms of nitric oxide sensitive guanylyl cyclase: evidence for stable insertion of activator drug, Biochem. Pharmacol., 147, 10, 10.1016/j.bcp.2017.11.010 Stasch, 2006, Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels, J. Clin. Invest., 116, 2552, 10.1172/JCI28371 Stuehr, 2021, Maturation, inactivation, and recovery mechanisms of soluble guanylyl cyclase, J. Biol. Chem., 296, 10.1016/j.jbc.2021.100336 da Silva, 2012, ACPYPE - AnteChamber PYthon parser interfacE, BMC Res. Notes, 5, 367, 10.1186/1756-0500-5-367 Vallurupalli, 2012, Studying “invisible” excited protein states in slow exchange with a major state conformation, J. Am. Chem. Soc., 134, 8148, 10.1021/ja3001419 Wang, 2004, Development and testing of a general amber force field, J. Comput. Chem., 25, 1157, 10.1002/jcc.20035 Williamson, 2013, Using chemical shift perturbation to characterise ligand binding, Prog. Nucl. Magn. Reson. Spectrosc., 73, 1, 10.1016/j.pnmrs.2013.02.001 Wittenborn, 2021, Structural perspectives on the mechanism of soluble guanylate cyclase activation, Int. J. Mol. Sci., 22, 5439, 10.3390/ijms22115439 Zhou, 2008, Soluble guanylyl cyclase activation by HMR-1766 (ataciguat) in cells exposed to oxidative stress, Am. J. Physiol. Heart Circ. Physiol., 295, 1763, 10.1152/ajpheart.51.2008