Repetitive sequence in the Epstein-Barr virus EBNA-3C gene is related to a family of minisatellite arrays in the human genome
Tóm tắt
A unique feature of the Epstein-Barr virus (EBV) genome is its high content of repetitive sequences. We identified a new human minisatellite element, tentatively designated MEB-1, that is similar to the 10 × “15bp” tandem repeat within the EBV nuclear antigen-3C (EBNA-3C) coding region. Southern blot analysis showed that the human genome has multiple copies of MEB-1-related repeats and that some of them are highly polymorphic. Both MEB-1 and the 10 × “15bp” repeat contain an octamer consensus GC[A/T]GG[A/T]GG, resembling the prokaryotic recombination signalchi. This octamer was also found in another EBV repeat sequence IR3 and the cellular GGA family of repeats that are related to IR3. Since the octamer motif is generally considered to have a role in the generation of a group of minisatellite DNA, these findings suggest that the four viral and cellular repeats have been generated through similar mechanisms promoted by the motif.
Tài liệu tham khảo
Kieff E. and Liebowitz D. in Fields B.N., Knipe D.M., Chanock R.M., Hirsch M.S., Melnick J.L., Monath T.P., and Roizman B. (eds).Virology. Raven Press, New York, 1990, pp. 1889–1920.
Baer R., Bankier A.T., Biggin M.D., Deininger P.L., Farrell P.J., Gibson T.J., Hatfull G., Hudson G.S., Satchwell S.C., Seguin C., Tuffnell P.S., and Barrell B.G., Nature310 207–211, 1984.
Farrell P.J. in Klein G. (ed.).Advances in Viral Oncology, Vol. 8. Raven Press, New York, 1989, pp. 103–132.
Karlin S., Blaisdell B.E., and Schachtel G.A., J Virol64 4264–4273, 1990.
Blaisdell B.E. and Karlin S., Proc Natl Acad Sci USA85 6637–6641, 1988.
Heller M., Henderson A., and Kieff E., Proc Natl Acad Sci USA79 5916–5920, 1982.
Heller M., Flemington E., Kieff E., and Deininger P., Mol Cell Biol5 457–465, 1985.
Hanahan D. and Meselson M. in Wu R., Grossman L., and Moldave K. (eds).Methods in Enzymology, Vol. 100. Academic Press, New York, 1983, pp. 333–342.
Sanger F., Nicklen S., and Coulson A.R., Proc Natl Acad Sci USA74 5463–5467, 1977.
Hennessy K., Heller M., van Santen V., and Kieff E., Science220 1396–1398, 1983.
Krowczynska A.M., Rudders R.A., and Krontiris T.G., Nucleic Acids Res18 1121–1127, 1990.
Jeffreys A.J., Wilson V., and Thein S.L., Nature314 67–73, 1985.
Smith G.R., Cell34 709–710, 1983.
Nakamura Y., Leppert M., O'Connell P., Wolff R., Holm T., Culver M., Martin C., Fujimoto E., Hoff M., Kumlin E., and White R., Science235 1616–1622, 1987.
Sawada I., Beal M.P., Shen C.-K.J., Chapman B., Wilson A.C., and Schmid C., Nucleic Acids Res11 8087–8101, 1983.
Heller M., van Santen V., and Kieff E., J Virol44 311–320, 1982.
Peden K., Mounts P., and Hayward G.S., Cell31 71–80, 1982.
Arrand J.R., Walsh-Arrand J.E., and Rymo L., EMBO J2 1673–1683, 1983.
Sun R., Spain T.A., Lin S.-F., and Miller G., Proc Natl Acad Sci USA91 8646–8650, 1994.
Feinberg A.P. and Vogelstein B., Anal Biochem137 266–267, 1984.