Repetitive magnetic stimulation promotes neural stem cells proliferation by upregulating MiR-106b in vitro

Hua Liu1, Xiaohua Han1, Hong Chen1, Caixia Zheng1, Yi Yang2, Xiaolin Huang1
1Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
2College of Health Science, Wuhan Institute of Physical Education, Wuhan, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Pell GS, Roth Y, Zangen A. Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Prog Neurobiol, 2011,93(1):59–98

Touge T, Gerschlager W, Brown P, et al. Are the after- effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clin Neurophysiol, 2001,112(11):2138–2145

Bilek E, Schafer A, Ochs E, et al. Application of high-frequency repetitive transcranial magnetic stimulation to the DLPFC alters human prefrontal-hippocampal functional interaction. J Neurosci, 2013,33(16):7050–7056

Lisanby SH, Datto CJ, Szuba MP. ECT and TMS: past, present, and future. Depress Anxiety, 2000,12(3):115–117

Rothkegel H, Sommer M, Paulus W. Breaks during 5Hz rTMS are essential for facilitatory after effects. Clin Neurophysiol, 2009,121(3):426–430

Guo F, Han X, Zhang J, et al. Repetitive transcranial magnetic stimulation promotes neural stem cell proliferation via the regulation of MiR-25 in a rat model of focal cerebral ischemia. PLoS One, 2014,9(10):e109267

Zeng Y, Yi R, Cullen BR. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J, 2005,24(1):138–148

Saito K, Ishizuka A, Siomi H, et al. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol, 2005,3(7):e235

Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol, 2009,10(2):126–139

Cremisi F. MicroRNAs and cell fate in cortical and retinal development. Front Cell Neurosci, 2013,7:141

Perruisseau-Carrier C, Jurga M, Forraz N, et al. miRNAs stem cell reprogramming for neuronal induction and differentiation. Mol Neurobiol, 2011,43(3):215–227

Zhao C, Sun G, Li S, et al. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol, 2009,16(4):365–371

Brett JO, Renault VM, Rafalski VA, et al. The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging, 2011,3(2):108–124

Peck B, Schulze A. A role for the cancer-associated miR-106b~25 cluster in neuronal stem cells. Aging, 2011,3(4):329–331

Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 2007,129(7):1401–1414

Morte MI, Carreira BP, Machado V, et al. Evaluation of proliferation of neural stem cells in vitro and in vivo. Curr Protoc Stem Cell Biol, 2013, Chapter 2: Unit 2D.14 doi: 10.1002/9780470151808.sc02d14s24.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001,25(4):402–408

Conti L, Cattaneo E. Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci, 2010,11(3):176–187

Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A, 2008,105(7):2415–2420

Hayashi Y, Takei H, Kurosumi M. Ki67 immunohistochemical staining: the present situation of diagnostic criteria. Nihon Rinsho, 2013,70(Suppl 7):428–432

Reif A, Fritzen S, Finger M, et al. Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry, 2006,11(5):514–522

Arias-Carrion O, Verdugo-Diaz L, Feria-Velasco A, et al. Neurogenesis in the subventricular zone following transcranial magnetic field stimulation and nigrostriatal lesions. J Neurosci Res, 2004,78(1):16–28

Werner S, Unsicker K, von Bohlen und Halbach O. Fibroblast growth factor-2 deficiency causes defects in adult hippocampal neurogenesis, which are not rescued by exogenous fibroblast growth factor-2. J Neurosci Res, 2011,89(10):1605–1617

Jeong CH, Kim SM, Lim JY, et al. Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model. Biomed Res Int, 2014,2014:129–145

Emsley JG, Hagg T. Endogenous and exogenous ciliary neurotrophic factor enhances forebrain neurogenesis in adult mice. Exp Neurol, 2003,183(2):298–310

Rotem A, Moses E. Magnetic stimulation of one-dimensional neuronal cultures. Biophys J, 2008, 94(12):5065–5078

Kim JY, Choi GS, Cho YW, et al. Attenuation of spinal cord injury-induced astroglial and microglial activation by repetitive transcranial magnetic stimulation in rats. J Korean Med Sci, 2013,28(2):295–299

Ueyama E, Ukai S, Ogawa A, et al. Chronic repetitive transcranial magnetic stimulation increases hippocampal neurogenesis in rats. Psychiatry Clin Neurosci, 2011,65(1):77–81

Sontag W, Kalka D. No effect of pulsed electromagnetic fields on PC12 and HL-60 cells. Radiat Environ Biophys, 2006,45(1):63–71

Vlachos A, Muller-Dahlhaus F, Rosskopp J, et al. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J Neurosci, 2012,32(48): 17514–17523

Gilio F, Conte A, Vanacore N, et al. Excitatory and inhibitory after-effects after repetitive magnetic transcranial stimulation (rTMS) in normal subjects. Exp Brain Res, 2007,176(4):588–593

Yang TS, Yang XH, Chen X, et al. MicroRNA-106b in cancer-associated fibroblasts from gastric cancer promotes cell migration and invasion by targeting PTEN. FEBS Lett, 2014,588(13):2162–2169

Tan W, Li Y, Lim SG, et al. miR-106b-25/miR-17-92 clusters: polycistrons with oncogenic roles in hepatocellular carcinoma. World J Gastroenterol, 2014,20(20):5962–5972

Semo J, Sharir R, Afek A, et al. The 106b~25 microRNA cluster is essential for neovascularization after hindlimb ischaemia in mice. Eur Heart J, 2013,35(45):3212–3223

Zhang XY, Tang LZ, Ren BG, et al. Interaction of MCM7 and RACK1 for activation of MCM7 and cell growth. Am J Pathol, 2013,182(3):796–805

Ying SY, Chang CP, Lin SL. Intron-mediated RNA interference, intronic microRNAs, and applications. Methods Mol Biol, 2010,629:205–237

Lutter D, Marr C, Krumsiek J, et al. Intronic microRNAs support their host genes by mediating synergistic and antagonistic regulatory effects. BMC Genomics, 2010, 11:224

Kippin TE, Martens DJ, van der Kooy D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev, 2005,19(6):756–767

Ivey KN, Srivastava D. MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell, 2010,7(1):36–41

Ivanovska I, Ball AS, Diaz RL, et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol, 2008,28(7):2167–2174

Joaquin M, Gubern A, Posas F. A novel G1 checkpoint mediated by the p57 CDK inhibitor and p38 SAPK promotes cell survival upon stress. Cell Cycle, 2012,11(18): 3339–3340

Kan T, Sato F, Ito T, et al. The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology, 2009,136(5):1689–1700

Nishioka S, Nakano D, Kitada K, et al. The cyclin- dependent kinase inhibitor p21 is essential for the beneficial effects of renal ischemic preconditioning on renal ischemia/reperfusion injury in mice. Kidney Int, 2013,85(4):871–879

von Harsdorf R, Hauck L, Mehrhof F, et al. E2F-1 overexpression in cardiomyocytes induces downregulation of p21CIP1 and p27KIP1 and release of active cyclin- dependent kinases in the presence of insulin-like growth factor I. Circ Res, 1999,85(2):128–136

Puri PL, Balsano C, Burgio VL, et al. MyoD prevents cyclinA/cdk2 containing E2F complexes formation in terminally differentiated myocytes. Oncogene, 1997,14 (10):1171–1184

Marques-Torrejon MA, Porlan E, Banito A, et al. Cyclin- dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression. Cell Stem Cell, 2012,12(1):88–100

Miyagi S, Nishimoto M, Saito T, et al. The Sox2 regulatory region 2 functions as a neural stem cell-specific enhancer in the telencephalon. J Biol Chem, 2006,281 (19):13374–13381

Lange C, Huttner WB, Calegari F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell, 2009,5(3):320–331

Lim S, Kaldis P. Loss of Cdk2 and Cdk4 induces a switch from proliferation to differentiation in neural stem cells. Stem Cells, 2012,30(7):1509–1520

Devgan V, Mammucari C, Millar SE, et al. p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev, 2005,19(12):1485–1495