Reperfusion therapy—What’s with the obstructed, leaky and broken capillaries?

Pathophysiology - Tập 24 Số 4 - Trang 213-228 - 2017
D. Neil Granger1, Peter R. Kvietys2
1Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, United States
2Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Heusch, 2014, Cardiovascular remodelling in coronary artery disease and heart failure, Lancet, 383, 1933, 10.1016/S0140-6736(14)60107-0

Ovbiagele, 2013, American Heart Association Advocacy Coordinating Committee and Stroke Council. Forecasting the future of stroke in the United States: a policy statement from the American Heart Association and American Stroke Association, Stroke, 44, 2361, 10.1161/STR.0b013e31829734f2

Bai, 2015, Revisiting cerebral postischemic reperfusion injury: new insights in understanding reperfusion failure, hemorrhage, and edema, Int. J. Stroke, 10, 143, 10.1111/ijs.12434

Ibanez, 2015, Evolving therapies for myocardial ischemia/reperfusion injury, J. Am. Coll. Cardiol., 65, 1454, 10.1016/j.jacc.2015.02.032

Carden, 2000, Pathophysiology of ischaemia-reperfusion injury, J. Pathol., 190, 255, 10.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6

Eltzschig, 2011, Ischemia and reperfusion—from mechanism to translation, Nat. Med., 17, 1391, 10.1038/nm.2507

Nour, 2013, Ischemia-reperfusion injury in stroke, Interv. Neurol., 18, 5

Hausenloy, 2016, Ischaemic conditioning and reperfusion injury, Nat. Rev. Cardiol., 13, 193, 10.1038/nrcardio.2016.5

Granger, 2015, Reperfusion injury and reactive oxygen species: the evolution of a concept, Redox Biol., 6, 524, 10.1016/j.redox.2015.08.020

Fordyce, 2015, Novel therapeutics in myocardial infarction: targeting microvascular dysfunction and reperfusion injury, Trends Pharmacol. Sci., 36, 605, 10.1016/j.tips.2015.06.004

Gursoy-Ozdemir, 2012, Microvascular protection is essential for successful neuroprotection in stroke, J. Neurochem., 123, 2, 10.1111/j.1471-4159.2012.07938.x

Dalkara, 2015, Cerebral microvascular pericytes and neurogliovascular signaling in health and disease, Brain Res., 1623, 3, 10.1016/j.brainres.2015.03.047

Butler, 2011, Management of the no-reflow phenomenon, Pharmacol. Ther., 132, 72, 10.1016/j.pharmthera.2011.05.010

Schwartz, 2012, Coronary no reflow, J. Mol. Cell. Cardiol., 52, 873, 10.1016/j.yjmcc.2011.06.009

Bekkers, 2010, Microvascular obstruction: underlying pathophysiology and clinical diagnosis, J. Am. Coll. Cardiol., 55, 1649, 10.1016/j.jacc.2009.12.037

Zhang, 2006, TNF-alpha contributes to endothelial dysfunction in ischemia/reperfusion injury, Arterioscler. Thromb. Vasc. Biol., 26, 475, 10.1161/01.ATV.0000201932.32678.7e

Tang, 2014, Transient ischemia elicits a sustained enhancement of thrombus development in the cerebral microvasculature: effects of anti-thrombotic therapy, Exp. Neurol., 261, 417, 10.1016/j.expneurol.2014.07.004

Krug, 1966, Blood supply of the myocardium after temporary coronary occlusion, Circ. Res., 19, 57, 10.1161/01.RES.19.1.57

Kloner, 1974, The no-reflow phenomenon after temporary coronary occlusion in the dog, J. Clin. Invest., 54, 1496, 10.1172/JCI107898

Granger, 1981, Superoxide radicals in feline intestinal ischemia, Gastroenterology, 81, 22, 10.1016/0016-5085(81)90648-X

Ambrosio, 1989, Progressive impairment of regional myocardial perfusion after initial restoration of postischemic blood flow, Circulation, 80, 1846, 10.1161/01.CIR.80.6.1846

Kurose, 1994, Molecular determinants of reperfusion-induced leukocyte adhesion and vascular protein leakage, Circ. Res., 74, 336, 10.1161/01.RES.74.2.336

Ma, 1992, Coronary endothelial and cardiac protective effects of a monoclonal antibody to intercellular adhesion molecule-1 in myocardial ischemia and reperfusion, Circulation, 86, 937, 10.1161/01.CIR.86.3.937

Kalogeris, 2012, Cell biology of ischemia/reperfusion injury, Int. Rev. Cell Mol. Biol., 298, 229, 10.1016/B978-0-12-394309-5.00006-7

Kurose, 1994, Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide, Circ. Res., 74, 376, 10.1161/01.RES.74.3.376

Kurose, 1997, Ischemia/reperfusion-induced microvascular dysfunction: role of oxidants and lipid mediators, Am. J. Physiol.-Heart Circ. Physiol., 272, H2976, 10.1152/ajpheart.1997.272.6.H2976

Lefer, 1993, Protection of ischemia-reperfusion injury by sydnonimine NO donors via inhibition of neutrophil-endothelium interaction, J. Cardiovasc. Pharmacol., 22, 10.1097/00005344-199300221-00007

Betgem, 2015, Intramyocardial haemorrhage after acute myocardial infarction, Nat. Rev. Cardiol., 12, 156, 10.1038/nrcardio.2014.188

Zhang, 2014, Hemorrhagic transformation after cerebral infarction: current concepts and challenges, Ann. Transl. Med., 2, 81

Bai, 2015, Revisiting cerebral postischemic reperfusion injury: new insights in understanding reperfusion failure, hemorrhage, and edema, Int. J. Stroke, 10, 143, 10.1111/ijs.12434

Cerra, 1974, Structural-functional correlates of reversible myocardial anoxia, J. Surg. Res., 16, 140, 10.1016/0022-4804(74)90022-5

Cerra, 1975, Hemorrhagic infarction: a reperfusion injury following prolonged myocardial ischemic anoxia, Surgery, 78, 95

Capone, 1978, Myocardial hemorrhage after coronary reperfusion in pigs, Am. J. Cardiol., 41, 259, 10.1016/0002-9149(78)90164-9

McDonagh, 1983, The role of the coronary microcirculation in myocardial recovery from ischemia, Yale J. Biol. Med., 56, 303

Mullane, 1984, Role of leukocytes in acute myocardial infarction in anesthetized dogs: relationship to myocardial salvage by anti-inflammatory drugs, J. Pharmacol. Exp. Ther., 228, 510

Fishbein, 1980, The relationship of vascular injury and myocardial hemorrhage to necrosis after reperfusion, Circulation, 62, 1274, 10.1161/01.CIR.62.6.1274

Meneely, 1974, The capillary factor in myocardial infarction, Am. J. Cardiol., 34, 583, 10.1016/0002-9149(74)90131-3

Higginson, 1982, Determinants of myocardial hemorrhage after coronary reperfusion in the anesthetized dog, Circulation, 65, 62, 10.1161/01.CIR.65.1.62

Kamijyo, 1977, Temporary regional cerebral ischemia in the cat. A model of hemorrhagic and subcortical infarction, J. Neuropathol. Exp. Neurol., 36, 338, 10.1097/00005072-197703000-00008

Ito, 1979, Brain edema during ischemia and after restoration of blood flow. Measurement of water, sodium, potassium content and plasma protein permeability, Stroke, 10, 542, 10.1161/01.STR.10.5.542

Weinstein, 1986, Neurological deficit and cerebral infarction after temporary middle cerebral artery occlusion in unanesthetized cats, Stroke, 17, 318, 10.1161/01.STR.17.2.318

Jickling, 2014, Hemorrhagic transformation after ischemic stroke in animals and humans, J. Cereb. Blood Flow Metab., 34, 185, 10.1038/jcbfm.2013.203

Czarnowska, 1995, Ultrastructural demonstration of endothelial glycocalyx disruption in the reperfused rat heart. Involvement of oxygen free radicals, Basic Res. Cardiol., 90, 357, 10.1007/BF00788496

Kvietys, 2012, Role of reactive oxygen and nitrogen species in the vascular responses to inflammation, Free Radic. Biol. Med., 52, 556, 10.1016/j.freeradbiomed.2011.11.002

Rubio-Gayosso, 2006, Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury, Am. J. Physiol. Heart Circ. Physiol., 290, H2247, 10.1152/ajpheart.00796.2005

van Golen, 2012, Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury, Free Radic. Biol. Med., 52, 1382, 10.1016/j.freeradbiomed.2012.01.013

Kolarova, 2014, Modulation of endothelial glycocalyx structure under inflammatory conditions, Mediat. Inflamm., 2014, 694312, 10.1155/2014/694312

Nguyen, 2001, Human endothelial gelatinases and angiogenesis, Int. J. Biochem. Cell Biol., 33, 960, 10.1016/S1357-2725(01)00007-3

Tong, 2013, Diosmin alleviates retinal edema by protecting the blood-retinal barrier and reducing retinal vascular permeability during ischemia/reperfusion injury, PLoS One, 8, e61794, 10.1371/journal.pone.0061794

Li, 2012, Ischemic preconditioning enhances integrity of coronary endothelial tight junctions, Biochem. Biophys. Res. Commun., 425, 630, 10.1016/j.bbrc.2012.07.130

Deem, 2004, Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: role of reactive oxygen species, Blood, 104, 2385, 10.1182/blood-2004-02-0665

Lipowsky, 2013, The effect of doxycycline on shedding of the glycocalyx due to reactive oxygen species, Microvasc. Res., 90, 80, 10.1016/j.mvr.2013.07.004

Reynolds, 1994, Platelets do not modulate leukocyte-mediated coronary microvascular damage during early reperfusion, Am. J. Physiol., 266, H171

Kvietys, 1997, Endothelial cell monolayers as a tool for studying microvascular pathophysiology, Am. J. Physiol., 273, G1189

Zehendner, 2013, Moderate hypoxia followed by reoxygenation results in blood-brain barrier breakdown via oxidative stress-dependent tight-junction protein disruption, PLoS One, 8, e82823, 10.1371/journal.pone.0082823

Gursoy-Ozdemir, 2004, Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia, Stroke, 35, 1449, 10.1161/01.STR.0000126044.83777.f4

Victorino, 2008, Ischemia-reperfusion injury in rats affects hydraulic conductivity in two phases that are temporally and mechanistically separate, Am. J. Physiol. Heart Circ. Physiol., 295, H2164, 10.1152/ajpheart.00419.2008

Schafer, 2003, Inhibition of contractile activation reduces reoxygenation-induced endothelial gap formation, Cardiovasc. Res., 58, 149, 10.1016/S0008-6363(02)00842-8

Gibson, 2014, Inhibition of Rho-kinase protects cerebral barrier from ischaemia-evoked injury through modulations of endothelial cell oxidative stress and tight junctions, J. Neurochem., 129, 816, 10.1111/jnc.12681

Fert-Bober, 2008, Inhibiting matrix metalloproteinase-2 reduces protein release into coronary effluent from isolated rat hearts during ischemia-reperfusion, Basic Res. Cardiol., 103, 431, 10.1007/s00395-008-0727-y

Granger, 2015, The gastrointestinal circulation: physiology and pathophysiology, Compr. Physiol., 5, 1541, 10.1002/cphy.c150007

Lerchenberger, 2013, Matrix metalloproteinases modulate ameboid-like migration of neutrophils through inflamed interstitial tissue, Blood, 122, 770, 10.1182/blood-2012-12-472944

Yang, 2009, NADPH oxidase in bone marrow-derived cells mediates pulmonary ischemia-reperfusion injury, Am. J. Respir. Cell Mol. Biol., 40, 375, 10.1165/rcmb.2008-0300OC

Fernandez-Jimenez, 2015, Pathophysiology underlying the bimodal edema phenomenon after myocardial ischemia/reperfusion, J. Am. Coll. Cardiol., 66, 816, 10.1016/j.jacc.2015.06.023

Yang, 2011, Blood-brain barrier breakdown in acute and chronic cerebrovascular disease, Stroke, 42, 3323, 10.1161/STROKEAHA.110.608257

Belayev, 1996, Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats, Brain Res., 739, 88, 10.1016/S0006-8993(96)00815-3

Fernandez-Jimenez, 2015, Myocardial edema after ischemia/reperfusion is not stable and follows a bimodal pattern: imaging and histological tissue characterization, J. Am. Coll. Cardiol., 65, 315, 10.1016/j.jacc.2014.11.004

Carrick, 2016, Temporal evolution of myocardial hemorrhage and edema in patients after acute ST-segment elevation myocardial infarction: pathophysiological insights and clinical implications, J. Am. Heart Assoc., 5, 10.1161/JAHA.115.002834

Strbian, 2008, The blood-brain barrier is continuously open for several weeks following transient focal cerebral ischemia, Neuroscience, 153, 175, 10.1016/j.neuroscience.2008.02.012

Shi, 2016, Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury, Nat. Commun., 7, 10523, 10.1038/ncomms10523

Chen, 2004, Depletion of intestinal resident macrophages prevents ischaemia reperfusion injury in gut, Gut, 53, 1772, 10.1136/gut.2003.034868

McKittrick, 2015, Mast cells promote blood brain barrier breakdown and neutrophil infiltration in a mouse model of focal cerebral ischemia, J. Cereb. Blood Flow Metab., 35, 638, 10.1038/jcbfm.2014.239

Annecke, 2011, Shedding of the coronary endothelial glycocalyx: effects of hypoxia/reoxygenation vs ischemia/reperfusion, Br. J. Anaesth., 107, 679, 10.1093/bja/aer269

Hase, 2012, Cilostazol, a phosphodiesterase inhibitor, prevents no-reflow and hemorrhage in mice with focal cerebral ischemia, Exp. Neurol., 233, 523, 10.1016/j.expneurol.2011.11.038

Nishimura, 2016, Detrimental role of pericyte Nox4 in the acute phase of brain ischemia, J. Cereb. Blood Flow Metab., 36, 1143, 10.1177/0271678X15606456

Shi, 2016, Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury, Nat. Commun., 7, 10523, 10.1038/ncomms10523

Adamson, 2003, PAF- and bradykinin-induced hyperpermeability of rat venules is independent of actin-myosin contraction, Am. J. Physiol. Heart Circ. Physiol., 285, H406, 10.1152/ajpheart.00021.2003

Knezevic, 2009, Tiam1 and Rac1 are required for platelet-activating factor-induced endothelial junctional disassembly and increase in vascular permeability, J. Biol. Chem., 284, 5381, 10.1074/jbc.M808958200

Inauen, 1990, Anoxia-reoxygenation-induced, neutrophil-mediated endothelial cell injury: role of elastase, Am. J. Physiol., 259, H925

Yoshida, 1995, Aspirin-induced, neutrophil-mediated injury to vascular endothelium, Inflammation, 19, 297, 10.1007/BF01534389

Gupta, 2010, Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death, FEBS Lett., 584, 3193, 10.1016/j.febslet.2010.06.006

Savchenko, 2014, VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice, Blood, 123, 141, 10.1182/blood-2013-07-514992

Tarikuz Zaman, 2013, Attenuation of cardiac vascular rhexis: a promising therapeutic target, Coron. Artery Dis., 24, 245, 10.1097/MCA.0b013e32835d6688

Zaman, 2011, Vascular rhexis in mice subjected to non-sustained myocardial ischemia and its therapeutic implications, Exp. Biol. Med. (Maywood), 236, 598, 10.1258/ebm.2011.011026

Krueger, 2015, Blood-brain barrier breakdown involves four distinct stages of vascular damage in various models of experimental focal cerebral ischemia, J. Cereb. Blood Flow Metab., 35, 292, 10.1038/jcbfm.2014.199

Del Zoppo, 2009, Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association, Stroke, 40, 2945, 10.1161/STROKEAHA.109.192535

Turner, 2016, Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke, Front. Cell. Neurosci., 10, 56, 10.3389/fncel.2016.00056

Suzuki, 2016, A review of the mechanisms of blood-brain barrier permeability by tissue-type plasminogen activator treatment for cerebral ischemia, Front. Cell. Neurosci., 10, 2, 10.3389/fncel.2016.00002

Hiu, 2008, Tissue plasminogen activator enhances the hypoxia/reoxygenation-induced impairment of the blood-brain barrier in a primary culture of rat brain endothelial cells, Cell. Mol. Neurobiol., 28, 1139, 10.1007/s10571-008-9294-x

Song, 2016, Release of matrix metalloproteinases-2 and 9 by S-nitrosylated caveolin-1 contributes to degradation of extracellular matrix in tPA-treated hypoxic endothelial cells, PLoS One, 11, e0149269, 10.1371/journal.pone.0149269

Uhl, 2014, Tissue plasminogen activator promotes postischemic neutrophil recruitment via its proteolytic and nonproteolytic properties, Arterioscler. Thromb. Vasc. Biol., 34, 1495, 10.1161/ATVBAHA.114.303721

Strbian, 2007, Mast cell stabilization reduces hemorrhage formation and mortality after administration of thrombolytics in experimental ischemic stroke, Circulation, 116, 411, 10.1161/CIRCULATIONAHA.106.655423

Asahi, 2000, Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trapping after embolic focal cerebral ischemia in rats, J. Cereb. Blood Flow Metab., 20, 452, 10.1097/00004647-200003000-00002

Chen, 2015, Peroxynitrite decomposition catalyst reduces delayed thrombolysis-induced hemorrhagic transformation in ischemia-reperfused rat brains, CNS Neurosci. Ther., 21, 585, 10.1111/cns.12406

Lanzer, 2015, Ischaemic stroke and ST-segment elevation myocardial infarction: fast-track single-stop approach, Eur. Heart J., 36, 2348, 10.1093/eurheartj/ehv217

Wang, 2015, Hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke: mechanisms, models, and biomarkers, Mol. Neurobiol., 52, 1572, 10.1007/s12035-014-8952-x

Ames, 1968, Cerebral ischemia. II. The no-reflow phenomenon, Am. J. Pathol., 52, 437

Engler, 1983, Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog, Am. J. Pathol., 111, 98

Schmid-Schönbein, 1987, Capillary plugging by granulocytes and the no-reflow phenomenon in the microcirculation, Fed. Proc., 46, 2397

Jerome, 1994, Leukocyte adhesion, edema, and development of postischemic capillary no-reflow, Am. J. Physiol., 267, H1329

Czarnowska, 1995, Ultrastructural demonstration of endothelial glycocalyx disruption in the reperfused rat heart: involvement of oxygen free radicals, Basic Res. Cardiol., 90, 357, 10.1007/BF00788496

Jerome, 1993, CD18-dependent adherence reactions play an important role in the development of the no-reflow phenomenon, Am. J. Physiol., 264, H479

Reffelmann, 2002, The no-reflow phenomenon: basic science and clinical correlates, Heart, 87, 162, 10.1136/heart.87.2.162

Horie, 1996, Leukocyte adhesion and hepatic microvascular responses to intestinal ischemia/reperfusion in rats, Gastroenterology, 111, 666, 10.1053/gast.1996.v111.pm8780571

Mori, 1992, Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons, Stroke, 712, 10.1161/01.STR.23.5.712

Choudhri, 1998, Reduced microvascular thrombosis and improved outcome in acute murine stroke by inhibiting GP IIb/IIIa receptor-mediated platelet aggregation, J. Clin. Invest., 102, 1301, 10.1172/JCI3338

Golino, 1987, Efficacy of platelet depletion in counteracting the detrimental effect of acute hypercholesterolemia on infarct size and the no-reflow phenomenon in rabbits undergoing coronary artery occlusion-reperfusion, Circulation, 76, 173, 10.1161/01.CIR.76.1.173

Golino, 1996, Effects of tissue factor induced by oxygen free radicals on coronary flow during reperfusion, Nat. Med., 2, 35, 10.1038/nm0196-35

Wu, 2012, CMR of microvascular obstruction and hemorrhage in myocardial infarction, J. Cardiovasc. Magn. Reson., 14, 68, 10.1186/1532-429X-14-68

House, 1987, Leukocyte-endothelium adhesion: microhemodynamics in mesentery of the cat, Microvasc. Res., 34, 363, 10.1016/0026-2862(87)90068-9

Mokhtarudin, 2015, Mathematical model of the effect of ischemia-reperfusion on brain capillary collapse and tissue swelling, Math. Biosci., 263, 111, 10.1016/j.mbs.2015.02.011

Manciet, 1994, Microvascular compression during myocardial ischemia: mechanistic basis for no-reflow phenomenon, Am. J. Physiol., 266, H1541

Little, 1975, Microcirculatory obstruction in focal cerebral ischemia: relationship to neuronal alterations, Mayo Clin. Proc., 50, 264

Garcia, 1994, Brain microvessels: factors altering their patency after the occlusion of a middle cerebral artery (Wistar rat), Am. J. Pathol., 145, 728

Kidambi, 2013, The effect of microvascular obstruction and intramyocardial hemorrhage on contractile recovery in reperfused myocardial infarction: insights from cardiovascular magnetic resonance, J. Cardiovasc. Magn. Reson., 15, 58, 10.1186/1532-429X-15-58

Kandler, 2014, The relation between hypointense core, microvascular obstruction and intramyocardial haemorrhage in acute reperfused myocardial infarction assessed by cardiac magnetic resonance imaging, Eur. Radiol., 24, 3277, 10.1007/s00330-014-3318-3

VanBenthuysen, 1987, Reperfusion after acute coronary occlusion in dogs impairs endothelium-dependent relaxation to acetylcholine and augments contractile reactivity in vitro, J. Clin. Invest., 79, 265, 10.1172/JCI112793

Quillen, 1990, Ischemia-reperfusion impairs endothelium-dependent relaxation of coronary microvessels but does not affect large arteries, Circulation, 82, 586, 10.1161/01.CIR.82.2.586

Gao, 2008, Role of TNF-alpha-induced reactive oxygen species in endothelial dysfunction during reperfusion injury, Am. J. Physiol. Heart Circ. Physiol., 295, H2242, 10.1152/ajpheart.00587.2008

Malliani, 1969, A sympathetic reflex elicited by experimental coronary occlusion, Am. J. Physiol., 217, 703, 10.1152/ajplegacy.1969.217.3.703

Shimizu, 1999, Effects of the angiotensin AT1-receptor antagonist candesartan improves recovery and reduced no-reflow area in reperfused ischemic hearts, J. Cardiovasc. Pharmacol., 34, 78, 10.1097/00005344-199907000-00013

Ryckwaert, 2005, Cumulative effects of AT1 and AT2 receptor blockade on ischemia-reperfusion recovery in rat hearts, Pharmacol. Res., 51, 497, 10.1016/j.phrs.2004.12.003

Yemisci, 2009, Pericyte contraction induced by oxidative stress impairs capillary reflow despite successful opening of occluded cerebral artery, Nat. Med., 15, 1031, 10.1038/nm.2022

Dalkara, 2012, Can restoring incomplete microcirculatory reperfusion improve stroke outcome after thrombolysis, J. Cereb. Blood Flow Metab., 32, 2091, 10.1038/jcbfm.2012.139

Bekkers, 2010, Clinical implications of microvascular obstruction and intramyocardial haemorrhage in acute myocardial infarction using cardiovascular magnetic resonance imaging, Eur. Radiol., 20, 2572, 10.1007/s00330-010-1849-9

Mathey, 1982, Transmural, haemorrhagic myocardial infarction after intracoronary streptokinase. Clinical, angiographic, and necropsy findings, Br. Heart J., 48, 546, 10.1136/hrt.48.6.546

Bouleti, 2015, The no-reflow phenomenon: state of the art, Arch. Cardiovasc. Dis., 108, 661, 10.1016/j.acvd.2015.09.006

Zhao, 2016, Impact of Intramyocardial hemorrhage and microvascular obstruction on cardiac mechanics in reperfusion injury: a speckle-tracking echocardiographic study, J. Am. Soc. Echocardiogr., 29, 973, 10.1016/j.echo.2016.06.011

Beek, 2010, Intramyocardial hemorrhage and microvascular obstruction after primary percutaneous coronary intervention, Int. J. Cardiovasc. Imaging, 26, 49, 10.1007/s10554-009-9499-1

Robbers, 2013, Magnetic resonance imaging-defined areas of microvascular obstruction after acute myocardial infarction represent microvascular destruction and haemorrhage, Eur. Heart J., 34, 2346, 10.1093/eurheartj/eht100

Ganame, 2009, Impact of myocardial haemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction, Eur. Heart J., 30, 1440, 10.1093/eurheartj/ehp093

Ørn, 2009, Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention, Eur. Heart J., 30, 1978, 10.1093/eurheartj/ehp219

Waller, 1987, J. Am. Coll. Cardiol., 9, 785, 10.1016/S0735-1097(87)80234-6

Soares, 2010, Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using CT in acute ischemic stroke patients, Stroke, 41, e34, 10.1161/STROKEAHA.109.568766

McCord, 1985, Oxygen-derived free radicals in postischemic tissue injury, N. Engl. J. Med., 312, 159, 10.1056/NEJM198501173120305

Shafik, 2013, Febuxostat improves the local and remote organ changes induced by intestinal ischemia/reperfusion in rats, Dig. Dis. Sci., 58, 650, 10.1007/s10620-012-2391-1

Drose, 2016, Ischemic A/D transition of mitochondrial complex I and its role in ROS generation, Biochim. Biophys. Acta, 1857, 946, 10.1016/j.bbabio.2015.12.013

Sanderson, 2013, Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation, Mol. Neurobiol., 47, 9, 10.1007/s12035-012-8344-z

Chen, 2014, Cardiac mitochondria and reactive oxygen species generation, Circ. Res., 114, 524, 10.1161/CIRCRESAHA.114.300559

Chouchani, 2013, Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I, Nat. Med., 19, 753, 10.1038/nm.3212

Chouchani, 2014, Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS, Nature, 515, 431, 10.1038/nature13909

Niatsetskaya, 2012, The oxygen free radicals originating from mitochondrial complex I contribute to oxidative brain injury following hypoxia-ischemia in neonatal mice, J. Neurosci., 32, 3235, 10.1523/JNEUROSCI.6303-11.2012

Juhaszova, 2004, Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore, J. Clin. Invest., 113, 1535, 10.1172/JCI19906

Kleikers, 2012, NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury, J. Mol. Med., 90, 1391, 10.1007/s00109-012-0963-3

Kahles, 2013, Which NADPH oxidase isoform is relevant for ischemic stroke? The case for Nox2, Antioxid. Redox Signal., 18, 1400, 10.1089/ars.2012.4721

Choi, 2015, Role of neuronal NADPH oxidase1 in the peri-infarct regions after stroke, PLoS One, 10, e0116814, 10.1371/journal.pone.0116814

Doerries, 2007, Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction, Circ. Res., 100, 894, 10.1161/01.RES.0000261657.76299.ff

Chen, 2009, Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion, J. Cereb. Blood Flow Metab., 29, 1262, 10.1038/jcbfm.2009.47

Braunersreuther, 2013, Role of NADPH oxidase isoforms nox1, nox2 and nox4 in myocardial ischemia/reperfusion injury, J. Mol. Cell. Cardiol., 64, 99, 10.1016/j.yjmcc.2013.09.007

Tang, 2011, Significance of marrow-derived nicotinamide adenine dinucleotide phosphate oxidase in experimental ischemic stroke, Ann. Neurol., 70, 606, 10.1002/ana.22476

Kleinschnitz, 2010, Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration, PLoS Biol., 8, e1000479, 10.1371/journal.pbio.1000479

Forstermann, 2012, Nitric oxide synthases: regulation and function, Eur. Heart J., 33, 829, 10.1093/eurheartj/ehr304

Alkaitis, 2012, Recoupling the cardiac nitric oxide synthases: tetrahydrobiopterin synthesis and recycling, Curr. Heart Fail. Rep., 9, 200, 10.1007/s11897-012-0097-5

Kietadisorn, 2012, Tackling endothelial dysfunction by modulating NOS uncoupling: new insights into its pathogenesis and therapeutic possibilities, Am. J. Physiol. Endocrinol. Metab., 302, E481, 10.1152/ajpendo.00540.2011

Roe, 2012, Nitric oxide synthase uncoupling: a therapeutic target in cardiovascular diseases, Vascul. Pharmacol., 57, 168, 10.1016/j.vph.2012.02.004

De Pascali, 2014, Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation, Biochemistry, 53, 3679, 10.1021/bi500076r

Dumitrescu, 2007, Myocardial ischemia results in tetrahydrobiopterin (BH4) oxidation with impaired endothelial function ameliorated by BH4, Proc. Natl. Acad. Sci. U. S. A., 104, 15081, 10.1073/pnas.0702986104

Siu, 2015, Netrin-1 abrogates ischemia/reperfusion-induced cardiac mitochondrial dysfunction via nitric oxide-dependent attenuation of NOX4 activation and recoupling of NOS, J. Mol. Cell. Cardiol., 78, 174, 10.1016/j.yjmcc.2014.07.005

King, 2014, Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent, Proc. Natl. Acad. Sci. U. S. A., 111, 3182, 10.1073/pnas.1321871111

Pernow, 2013, Arginase as a potential target in the treatment of cardiovascular disease: reversal of arginine steal?, Cardiovasc. Res., 98, 334, 10.1093/cvr/cvt036

Schreckenberg, 2015, Mechanism and consequences of the shift in cardiac arginine metabolism following ischaemia and reperfusion in rats, Thromb. Haemost., 113, 482, 10.1160/TH14-05-0477

Yang, 2013, Arginase regulates red blood cell nitric oxide synthase and export of cardioprotective nitric oxide bioactivity, Proc. Natl. Acad. Sci. U. S. A., 110, 15049, 10.1073/pnas.1307058110

Tratsiakovich, 2013, Myocardial protection by co-administration of L-arginine and tetrahydrobiopterin during ischemia and reperfusion, Int. J. Cardiol., 169, 83, 10.1016/j.ijcard.2013.08.075

Dejonckheere, 2011, Matrix metalloproteinases as drug targets in ischemia/reperfusion injury, Drug Discov. Today, 16, 762

Nagase, 1999, Matrix metalloproteinases, J. Biol. Chem., 274, 21491, 10.1074/jbc.274.31.21491

Loffek, 2011, Series matrix metalloproteinases in lung health and disease: biological role of matrix metalloproteinases: a critical balance, Eur. Respir. J., 38, 191, 10.1183/09031936.00146510

Parks, 2004, Matrix metalloproteinases as modulators of inflammation and innate immunity, Nat. Rev. Immunol., 4, 617, 10.1038/nri1418

Murphy, 2008, Progress in matrix metalloproteinase research, Mol. Asp. Med., 29, 290, 10.1016/j.mam.2008.05.002

Chelladurai, 2012, Matrix metalloproteinases and their inhibitors in pulmonary hypertension, Eur. Respir. J., 40, 766, 10.1183/09031936.00209911

Lenglet, 2014, Analysis of the expression of nine secreted matrix metalloproteinases and their endogenous inhibitors in the brain of mice subjected to ischaemic stroke, Thromb. Haemost., 112, 363, 10.1160/TH14-01-0007

Lindsey, 2012, Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction, Cardiovasc. Ther., 30, 31, 10.1111/j.1755-5922.2010.00207.x

Lakhan, 2013, Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke, Front. Neurol., 4, 32, 10.3389/fneur.2013.00032

Spinale, 2014, Targeting matrix metalloproteinases in heart disease: lessons from endogenous inhibitors, Biochem. Pharmacol., 90, 7, 10.1016/j.bcp.2014.04.011

Yang, 2015, Matrix metalloproteinases as therapeutic targets for stroke, Brain Res., 1623, 30, 10.1016/j.brainres.2015.04.024

Neri, 2017, Ischemia/reperfusion injury following acute myocardial infarction: a critical issue for clinicians and forensic pathologists, Mediat. Inflamm., 2017, 7018393, 10.1155/2017/7018393

Lindsey, 2016, Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling, J. Mol. Cell. Cardiol., 91, 134, 10.1016/j.yjmcc.2015.12.018

Kim, 2006, Matrix metalloproteinases in cerebral ischemia, J. Clin. Neurol., 2, 163, 10.3988/jcn.2006.2.3.163

Sela-Passwell, 1803, Structural and functional bases for allosteric control of MMP activities: can it pave the path for selective inhibition?, Biochim. Biophys. Acta, 1, 29

Ethell, 2007, Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets, J. Neurosci. Res., 85, 2813, 10.1002/jnr.21273

Ra, 2007, Control of matrix metalloproteinase catalytic activity, Matrix Biol., 26, 587, 10.1016/j.matbio.2007.07.001

Tallant, 2010, Matrix metalloproteinases: fold and function of their catalytic domains, Biochim. Biophys. Acta, 1803, 20, 10.1016/j.bbamcr.2009.04.003

Nissinen, 2014, Matrix metalloproteinases in inflammation, Biochim. Biophys. Acta, 1840, 2571, 10.1016/j.bbagen.2014.03.007

Rodriguez, 2010, Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics, Biochim. Biophys. Acta, 1803, 39, 10.1016/j.bbamcr.2009.09.015

Chakraborti, 2003, Regulation of matrix metalloproteinases: an overview, Mol. Cell. Biochem., 253, 269, 10.1023/A:1026028303196

Aschner, 2014, Matrix metalloproteinases and protein tyrosine kinases: potential novel targets in acute lung injury and ARDS, Chest, 146, 1081, 10.1378/chest.14-0397

Khokha, 2013, Metalloproteinases and their natural inhibitors in inflammation and immunity, Nat. Rev. Immunol., 13, 649, 10.1038/nri3499

Hayashida, 2010, Molecular and cellular mechanisms of ectodomain shedding, Anat. Rec. (Hoboken), 293, 925, 10.1002/ar.20757

Alameddine, 2016, Matrix metalloproteinases and tissue inhibitor of metalloproteinases in inflammation and fibrosis of skeletal muscles, J. Neuromuscul. Dis., 3, 455, 10.3233/JND-160183

Yang, 2011, Blood-brain barrier breakdown in acute and chronic cerebrovascular disease, Stroke, 42, 3323, 10.1161/STROKEAHA.110.608257

Yamamoto, 2015, Extracellular regulation of metalloproteinases, Matrix Biol., 44–46, 255, 10.1016/j.matbio.2015.02.007

Kvietys, 2001, Neutrophil diapedesis: paracellular or transcellular, News Physiol. Sci., 16, 15

Cepinskas, 1999, PAF-induced elastase-dependent neutrophil transendothelial migration is associated with the mobilization of elastase to the neutrophil surface and localization to the migrating front, J. Cell Sci., 112, 1937, 10.1242/jcs.112.12.1937

Pilcher, 1997, The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix, J. Cell Biol., 137, 1445, 10.1083/jcb.137.6.1445

Arpino, 2015, The role of TIMPs in regulation of extracellular matrix proteolysis, Matrix Biol., 44–46, 247, 10.1016/j.matbio.2015.03.005

Alameddine, 2012, Matrix metalloproteinases in skeletal muscles: friends or foes?, Neurobiol. Dis., 48, 508, 10.1016/j.nbd.2012.07.023

Brew, 2010, The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity, Biochim. Biophys. Acta, 1803, 55, 10.1016/j.bbamcr.2010.01.003

Jackson, 2017, TIMPs: versatile extracellular regulators in cancer, Nat. Rev. Cancer, 17, 38, 10.1038/nrc.2016.115

Lalu, 2005, Ischaemia-reperfusion injury activates matrix metalloproteinases in the human heart, Eur. Heart J., 26, 27, 10.1093/eurheartj/ehi007

Dobaczewski, 2010, The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction, J. Mol. Cell. Cardiol., 48, 504, 10.1016/j.yjmcc.2009.07.015

Turner, 2016, Implications of MMP9 for Blood brain barrier disruption and hemorrhagic transformation following ischemic stroke, Front. Cell. Neurosci., 10, 56, 10.3389/fncel.2016.00056

Hu, 2017, Cerebral vascular disease and neurovascular injury in ischemic stroke, Circ. Res., 120, 449, 10.1161/CIRCRESAHA.116.308427

Iyer, 2012, The history of matrix metalloproteinases: milestones, myths, and misperceptions, Am. J. Physiol. Heart Circ. Physiol., 303, H919, 10.1152/ajpheart.00577.2012

Alfonso-Jaume, 2006, Cardiac ischemia-reperfusion injury induces matrix metalloproteinase-2 expression through the AP-1 components FosB and JunB, Am. J. Physiol. Heart Circ. Physiol., 291, H1838, 10.1152/ajpheart.00026.2006

Nishimura, 2016, Detrimental role of pericyte Nox4 in the acute phase of brain ischemia, J. Cereb. Blood Flow Metab., 36, 1143, 10.1177/0271678X15606456

Clark, 2008, The regulation of matrix metalloproteinases and their inhibitors, Int. J. Biochem. Cell Biol., 40, 1362, 10.1016/j.biocel.2007.12.006

Fujimoto, 2008, Tissue inhibitor of metalloproteinases protect blood-brain barrier disruption in focal cerebral ischemia, J. Cereb. Blood Flow Metab., 28, 1674, 10.1038/jcbfm.2008.59

Reuter, 2013, Temporal profile of matrix metalloproteinases and their inhibitors in a human endothelial cell culture model of cerebral ischemia, Cerebrovasc. Dis., 35, 514, 10.1159/000350731

Takawale, 2014, Myocardial recovery from ischemia-reperfusion is compromised in the absence of tissue inhibitor of metalloproteinase 4, Circ. Heart Fail., 7, 652, 10.1161/CIRCHEARTFAILURE.114.001113

Piccardi, 2015, Unbalanced metalloproteinase-9 and tissue inhibitors of metalloproteinases ratios predict hemorrhagic transformation of lesion in ischemic stroke patients treated with thrombolysis: results from the MAGIC study, Front. Neurol., 6, 121, 10.3389/fneur.2015.00121

Spallarossa, 2006, Matrix metalloproteinase-2 and −9 are induced differently by doxorubicin in H9c2 cells: the role of MAP kinases and NAD(P)H oxidase, Cardiovasc. Res., 69, 736, 10.1016/j.cardiores.2005.08.009

Singh, 2012, Activation of proteolytic enzymes and depression of the sarcolemmal Na+/K+-ATPase in ischemia-reperfused heart may be mediated through oxidative stress, Can. J. Physiol. Pharmacol., 90, 249, 10.1139/y11-128

Rakkar, 2014, Attenuation of urokinase activity during experimental ischaemia protects the cerebral barrier from damage through regulation of matrix metalloproteinase-2 and NAD(P)H oxidase, Eur. J. Neurosci., 39, 2119, 10.1111/ejn.12552

Rajagopalan, 1996, Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability, J. Clin. Invest., 98, 2572, 10.1172/JCI119076

Shah, 1987, Degradation of human glomerular basement membrane by stimulated neutrophils. Activation of a metalloproteinase(s) by reactive oxygen metabolites, J. Clin. Invest., 79, 25, 10.1172/JCI112790

Okamoto, 2001, Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation, J. Biol. Chem., 276, 29596, 10.1074/jbc.M102417200

van Golen, 2012, Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury, Free Radic. Biol. Med., 52, 1382, 10.1016/j.freeradbiomed.2012.01.013

Grote, 2003, Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species, Circ. Res., 92, e80, 10.1161/01.RES.0000077044.60138.7C

Deem, 2004, Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: role of reactive oxygen species, Blood, 104, 2385, 10.1182/blood-2004-02-0665

Weiss, 1985, Oxidative autoactivation of latent collagenase by human neutrophils, Science, 227, 747, 10.1126/science.2982211

Fu, 2001, Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase, J. Biol. Chem., 276, 41279, 10.1074/jbc.M106958200

Shabani, 1998, The oxidative inactivation of tissue inhibitor of metalloproteinase-1 (TIMP-1) by hypochlorous acid (HOCI) is suppressed by anti-rheumatic drugs, Free Radic. Res., 28, 115, 10.3109/10715769809065797

Wang, 2007, Myeloperoxidase inactivates TIMP-1 by oxidizing its N-terminal cysteine residue: an oxidative mechanism for regulating proteolysis during inflammation, J. Biol. Chem., 282, 31826, 10.1074/jbc.M704894200

Shirley, 2014, Oxidative stress and the use of anti-oxidants in stroke, Antioxidants, 3, 472, 10.3390/antiox3030472