Repeated radiation damage and thermal annealing of avalanche photodiodes

EPJ Quantum Technology - Tập 8 - Trang 1-12 - 2021
Ian DSouza1,2, Jean-Philippe Bourgoin1,2,3, Brendon L. Higgins1,2, Jin Gyu Lim1,4, Ramy Tannous1,2, Sascha Agne1,2, Brian Moffat1, Vadim Makarov5,6,7,2, Thomas Jennewein1,2
1Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
2Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
3Aegis Quantum, Waterloo, Canada
4Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
5Russian Quantum Center, Moscow, Russia
6Shanghai Branch, National Laboratory for Physical Sciences at Microscale and CAS Center for Excellence in Quantum Information, University of Science and Technology of China, Shanghai, People’s Republic of China
7NTI Center for Quantum Communications, National University of Science and Technology MISiS, Moscow, Russia

Tóm tắt

Avalanche photodiodes (APDs) are well-suited for single-photon detection on quantum communication satellites as they are a mature technology with high detection efficiency without requiring cryogenic cooling. They are, however, prone to significantly increased thermal noise caused by in-orbit radiation damage. Previous work demonstrated that a one-time application of thermal annealing reduces radiation-damage-induced APD thermal noise. Here we examine the effect of cyclical proton irradiation and thermal annealing. We use an accelerated testing environment which emulates a realistic two-year operating profile of a satellite in low-Earth-orbit. We show that repeated thermal annealing is effective at maintaining thermal noise of silicon APDs within a range suitable for quantum key distribution throughout the nominal mission life, and beyond. We examine two strategies—annealing at a fixed period of time, and annealing only when the thermal noise exceeds a pre-defined limit. We find both strategies exhibit similar thermal noise at end-of-life, with a slight overall advantage to annealing conditionally. We also observe that afterpulsing probability of the detector increases with cumulative proton irradiation. This knowledge helps guide design and tasking decisions for future space-borne quantum communication applications.

Tài liệu tham khảo

Shor PW. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999;41(2):303–32. https://doi.org/10.1137/S0036144598347011. McEliece RJ. A public-key cryptosystem based on algebraic. DSN Progress Rep. 1978;44:114–6. Canteaut A, Sendrier N. Cryptanalysis of the original McEliece cryptosystem. In: International conference on the theory and application of cryptology and information security. Berlin: Springer; 1998. p. 187–99. https://doi.org/10.1007/3-540-49649-1_16. Bennett CH, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proc. International conference on computers, systems, and signal processing. Bangalore, India. New York: IEEE Press; 1984. p. 175–9. https://doi.org/10.1016/j.tcs.2014.05.025. Bennett CH, Brassard G, Mermin ND. Quantum cryptography without Bell’s theorem. Phys Rev Lett. 1992;68(5):557. https://doi.org/10.1103/PhysRevLett.68.557. Scarani V, Bechmann-Pasquinucci H, Cerf NJ, Dušek M, Lütkenhaus N, Peev M. The security of practical quantum key distribution. Rev Mod Phys. 2009;81(3):1301. https://doi.org/10.1103/RevModPhys.81.1301. Bourgoin J, Meyer-Scott E, Higgins BL, Helou B, Erven C, Hübel H, Kumar B, Hudson D, D’Souza I, Girard R, Laflamme R, Jennewein T. A comprehensive design and performance analysis of low Earth orbit satellite quantum communication. New J Phys. 2013;15(2):023006. https://doi.org/10.1088/1367-2630/16/6/069502. Liao S-K, Cai W-Q, Liu W-Y, Zhang L, Li Y, Ren J-G, Yin J, Shen Q, Cao Y, Li Z-P, Li F-Z, Chen X-W, Sun L-H, Jia J-J, Wu J-C, Jiang X-J, Wang J-F, Huang Y-M, Wang Q, Zhou Y-L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y-A, Liu N-L, Wang X-B, Zhu Z-C, Lu C-Y, Shu R, Peng C-Z, Wang J-Y, Pan J-W. Satellite-to-ground quantum key distribution. Nature. 2017;549:43. https://doi.org/10.1038/nature23655. Jennewein T, Bourgoin JP, Higgins B, Holloway C, Meyer-Scott E, Erven C, Heim B, Yan Z, Hübel H, Weihs G, Choi E, D’Souza I, Hudson D, Laflamme R. QEYSSAT: a mission proposal for a quantum receiver in space. Proc SPIE. 2014;8997:89970–1. https://doi.org/10.1117/12.2041693. Quantum Encryption and Science Satellite (QEYSSat). https://www.asc-csa.gc.ca/eng/sciences/qeyssat.asp. Accessed 27 November 2020. Chancellor J, Scott G, Sutton J. Space radiation: the number one risk to astronaut health beyond low Earth orbit. Life. 2014;4(3):491–510. https://doi.org/10.3390/life4030491. Srour J, Marshall CJ, Marshall PW. Review of displacement damage effects in silicon devices. IEEE Trans Nucl Sci. 2003;50(3):653–70. https://doi.org/10.1109/TNS.2003.813197. Anisimova E. Single-photon detectors for long distance quantum communications. PhD thesis. University of Waterloo; 2018. http://hdl.handle.net/10012/12935. Gallivanoni A, Rech I, Ghioni M. Progress in quenching circuits for single photon avalanche diodes. IEEE Trans Nucl Sci. 2010;57(6):3815–26. https://doi.org/10.1109/TNS.2010.2074213. Lim JG, Anisimova E, Higgins BL, Bourgoin J-P, Jennewein T, Makarov V. Laser annealing heals radiation damage in avalanche photodiodes. EPJ Quantum Technol. 2017;4(1):11. https://doi.org/10.1140/epjqt/s40507-017-0064-x. Kim Y-S, Jeong Y-C, Sauge S, Makarov V, Kim Y-H. Ultra-low noise single-photon detector based on Si avalanche photodiode. Rev Sci Instrum. 2011;82:093110. https://doi.org/10.1063/1.3641294. Tan YC, Chandrasekara R, Cheng C, Ling A. Silicon avalanche photodiode operation and lifetime analysis for small satellites. Opt Express. 2013;21(14):16946–54. https://doi.org/10.1364/OE.21.016946. Anisimova E, Higgins BL, Bourgoin J-P, Cranmer M, Choi E, Hudson D, Piche LP, Scott A, Makarov V, Jennewein T. Mitigating radiation damage of single photon detectors for space applications. EPJ Quantum Technol. 2017;4(1):10. https://doi.org/10.1140/epjqt/s40507-017-0062-z. Dale CJ, Chen L, McNulty PJ, Marshall PW, Burke EA. A comparison of Monte Carlo and analytic treatments of displacement damage in Si microvolumes. IEEE Trans Nucl Sci. 1994;41(6):1974–83. https://doi.org/10.1109/23.340532. Lim JG. Laser annealing irradiated silicon single-photon avalanche photodiodes for quantum satellite receiver. Master’s thesis. University of Waterloo; 2018. http://hdl.handle.net/10012/13284. Sun X, Dautet H. Proton radiation damage of Si APD single photon counters. In: Radiation effects data workshop, 2001 IEEE. New York: IEEE Press; 2001. p. 146–50. https://doi.org/10.1109/REDW.2001.960462. Bourgoin J-P. Experimental and theoretical demonstration of the feasibility of global quantum cryptography using satellites. PhD thesis. University of Waterloo; 2014. http://hdl.handle.net/10012/8897. He D-Y, Wang S, Chen W, Yin Z-Q, Qian Y-J, Zhou Z, Guo G-C, Han Z-F. Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse. Appl Phys Lett. 2017;110(11):111104. https://doi.org/10.1063/1.4978599. Lunghi T, Barreiro C, Guinnard O, Houlmann R, Jiang X, Itzler MA, Zbinden H. Free-running single-photon detection based on a negative feedback InGaAs APD. J Mod Opt. 2012;59(17):1481–8. https://doi.org/10.1080/09500340.2012.690050.