Repeatability for Gaussian and non‐Gaussian data: a practical guide for biologists

Biological Reviews - Tập 85 Số 4 - Trang 935-956 - 2010
Shinichi Nakagawa1, Holger Schielzeth1
1Abteilung Kempenaers, Seewiesen, Max Planck Institut für Ornithologie, Max Planck Society

Tóm tắt

Repeatability (more precisely the common measure of repeatability, the intra‐class correlation coefficient, ICC) is an important index for quantifying the accuracy of measurements and the constancy of phenotypes. It is the proportion of phenotypic variation that can be attributed to between‐subject (or between‐group) variation. As a consequence, the non‐repeatable fraction of phenotypic variation is the sum of measurement error and phenotypic flexibility. There are several ways to estimate repeatability for Gaussian data, but there are no formal agreements on how repeatability should be calculated for non‐Gaussian data (e.g. binary, proportion and count data). In addition to point estimates, appropriate uncertainty estimates (standard errors and confidence intervals) and statistical significance for repeatability estimates are required regardless of the types of data. We review the methods for calculating repeatability and the associated statistics for Gaussian and non‐Gaussian data. For Gaussian data, we present three common approaches for estimating repeatability: correlation‐based, analysis of variance (ANOVA)‐based and linear mixed‐effects model (LMM)‐based methods, while for non‐Gaussian data, we focus on generalised linear mixed‐effects models (GLMM) that allow the estimation of repeatability on the original and on the underlying latent scale. We also address a number of methods for calculating standard errors, confidence intervals and statistical significance; the most accurate and recommended methods are parametric bootstrapping, randomisation tests and Bayesian approaches. We advocate the use of LMM‐ and GLMM‐based approaches mainly because of the ease with which confounding variables can be controlled for. Furthermore, we compare two types of repeatability (ordinary repeatability and extrapolated repeatability) in relation to narrow‐sense heritability. This review serves as a collection of guidelines and recommendations for biologists to calculate repeatability and heritability from both Gaussian and non‐Gaussian data.

Từ khóa


Tài liệu tham khảo

10.1163/156853999501748

Becker W. A.(1992).A manual of quantitative genetics 5th edition. Academic Enterprises Pullman WA.

10.1016/j.anbehav.2008.12.022

10.2307/2390510

Biro P. A., 2010, Proceedings of the Royal Society B‐Biological Sciences, 71

10.1007/BF02270919

10.1016/j.tree.2008.10.008

10.1016/j.anbehav.2006.10.032

10.1098/rspb.2008.1251

10.1098/rspb.2007.0951

10.1111/j.1467-985X.2004.00365.x

Carrasco J. L.(2009).A generalized concordance correlation coefficient based on the variance components generalized linear mixed models with application to overdispersed count data.Biometrics in press DOI:10.1111/j.1541-0420

10.1111/j.0006-341X.2003.00099.x

10.1002/sim.2397

10.1080/10543400701329463

10.1080/10543400802527890

10.1111/j.1461-0248.2004.00702.x

DeWitt T. J., 2004, Phenotypic plasticity: functional and conceptual approaches.

10.1006/anbe.2002.2006

Dingemanse N. J., 2009, Behavioural reaction norms: animal personality meets individual plasticity, Trends in Ecology & Evolution, 25, 82

10.1046/j.1365-2435.2002.00621.x

10.2307/1403259

Falconer D. S., 1996, Introduction to quantitative genetics

Faraway J. J., 2006, Extending the linear model

10.1177/014662167900300410

10.1016/j.anbehav.2004.02.007

10.1093/beheco/arp137

10.1111/j.1420-9101.2006.01135.x

Gelman A., 2007, Data analysis using regression and multilevel/hierarchical models.

Gill J., 2007, Bayesian methods: a social and behavioral sciences approach., 10.1201/9781420010824

10.1207/S15328031US0104_02

Hadfield J. D., 2010, MCMC methods for multi‐response Generalised Linear Mixed Models: the MCMCglmm R package, Journal of Statistical Software, 33, 10.18637/jss.v033.i02

10.1111/j.1420-9101.2009.01915.x

10.1111/j.1439-0388.2005.00548.x

Lee Y. Nelder J. A.&Pawitan Y.(2006).Generalized linear models with random effects: unified analysis via H‐likelihood. Chapman & Hall/CRC Boca Raton FL.

10.2307/4087240

Littell R. C. Milliken G. A. Stroup W. W. Wolfinger R. D.&Schabenberger O.(2006).SAS®for Mixed Models. SAS Institue Inc. Cary NC.

Lynch M., 1998, Genetics and analysis of quantitative traits.

Manly B. R. J., 2006, Randomization, Bootstrap and Monte carlo Methods in Biology

McCarthy M. A.(2007).Bayesian methods for ecology.Cambridge University Press Cambridge.

McCulloch C. E., 2002, Generalized, linear and mixed models.

10.1037/1082-989X.1.1.30

Merilä J., 2000, Avian quantitative genetics., Current Ornithology, 9, 179

10.1111/j.1469-185X.2007.00027.x

10.1111/j.1420-9101.2007.01403.x

10.1007/s00442-007-0765-4

10.1093/oxfordjournals.aje.a113818

10.1093/biomet/41.3-4.544

10.1111/j.1420-9101.2007.01300.x

10.5735/086.046.0205

Pigliucci M., 2001, Phenotypic plasticity: beyond nature and nurture., 10.56021/9780801867880

R Development CoreTeam, 2009, R: A language and environment for statistical computing

10.1111/j.1469-185X.2007.00010.x

10.1111/j.1365-2664.2007.01377.x

10.1111/j.2041-210X.2010.00012.x

10.1016/j.anbehav.2010.03.006

10.1111/j.1558-5646.2009.00890.x

10.1093/beheco/arn145

10.1037/0033-2909.86.2.420

10.1016/j.tree.2004.04.009

10.1086/422893

Snijders T. A. B., 1999, Multilevel analysis: an introduction to basic and advanced multilevel modeling.

10.1073/pnas.94.2.549

10.1093/biomet/86.2.289

10.1111/j.1469-185X.2009.00103.x

10.1111/j.1461-0248.2007.01034.x

10.1016/j.anbehav.2008.11.006

Venables W. N., 2002, Modern applied statistics with S, 4th edition., 10.1007/978-0-387-21706-2

10.2307/2347496

Verbeke G., 2001, Linear Mixed Models for Longitudinal Data

10.1038/nrg2322

10.1111/j.1365-294X.2006.02808.x

10.1111/j.1420-9101.2008.01500.x

10.1007/s10682-006-9106-z

10.1111/j.0006-341X.2004.00232.x