Repeat interruptions in spinocerebellar ataxia type 10 expansions are strongly associated with epileptic seizures
Tóm tắt
Spinocerebellar ataxia type 10 (SCA10), an autosomal dominant neurodegenerative disorder, is the result of a non-coding, pentanucleotide repeat expansion within intron 9 of the Ataxin 10 gene. SCA10 patients present with pure cerebellar ataxia; yet, some families also have a high incidence of epilepsy. SCA10 expansions containing penta- and heptanucleotide interruption motifs, termed “ATCCT interruptions,” experience large contractions during germline transmission, particularly in paternal lineages. At the same time, these alleles confer an earlier age at onset which contradicts traditional rules of genetic anticipation in repeat expansions. Previously, ATCCT interruptions have been associated with a higher prevalence of epileptic seizures in one Mexican-American SCA10 family. In a large cohort of SCA10 families, we analyzed whether ATCCT interruptions confer a greater risk for developing seizures in these families. Notably, we find that the presence of repeat interruptions within the SCA10 expansion confers a 6.3-fold increase in the risk of an SCA10 patient developing epilepsy (6.2-fold when considering patients of Mexican ancestry only) and a 13.7-fold increase in having a positive family history of epilepsy (10.5-fold when considering patients of Mexican ancestry only). We conclude that the presence of repeat interruptions in SCA10 repeat expansion indicates a significant risk for the epilepsy phenotype and should be considered during genetic counseling.
Tài liệu tham khảo
Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, Khajavi M, McCall AE, Davis CF, Zu L, Achari M, Pulst SM, Alonso E, Noebels JL, Nelson DL, Zoghbi HY, Ashizawa T (2000) Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 26(2):191–194. doi:10.1038/79911
Wang JL, Wu YQ, Lei LF, Shen L, Jiang H, Zhou YF, Yi JP, Zhou J, Yan XX, Pan Q, Xia K, Tang BS (2010) [Polynucleotide repeat expansion of nine spinocerebellar ataxia subtypes and dentatorubral-pallidoluysian atrophy in healthy Chinese Han population]. Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics 27 (5):501–505. doi:10.3760/cma.j.issn.1003-9406.2010.05.006
Matsuura T, Fang P, Pearson CE, Jayakar P, Ashizawa T, Roa BB, Nelson DL (2006) Interruptions in the expanded ATTCT repeat of spinocerebellar ataxia type 10: repeat purity as a disease modifier? Am J Hum Genet 78(1):125–129. doi:10.1086/498654
Raskin S, Ashizawa T, Teive HA, Arruda WO, Fang P, Gao R, White MC, Werneck LC, Roa B (2007) Reduced penetrance in a Brazilian family with spinocerebellar ataxia type 10. Arch Neurol 64(4):591–594. doi:10.1001/archneur.64.4.591
Alonso I, Jardim LB, Artigalas O, Saraiva-Pereira ML, Matsuura T, Ashizawa T, Sequeiros J, Silveira I (2006) Reduced penetrance of intermediate size alleles in spinocerebellar ataxia type 10. Neurology 66(10):1602–1604. doi:10.1212/01.wnl.0000216266.30177.bb
Lin X, Ashizawa T (2005) Recent progress in spinocerebellar ataxia type-10 (SCA10). Cerebellum 4(1):37–42. doi:10.1080/14734220510007897
Rasmussen A, Matsuura T, Ruano L, Yescas P, Ochoa A, Ashizawa T, Alonso E (2001) Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol 50(2):234–239
Matsuura T, Achari M, Khajavi M, Bachinski LL, Zoghbi HY, Ashizawa T (1999) Mapping of the gene for a novel spinocerebellar ataxia with pure cerebellar signs and epilepsy. Ann Neurol 45(3):407–411
Gatto EM, Gao R, White MC, Uribe Roca MC, Etcheverry JL, Persi G, Poderoso JJ, Ashizawa T (2007) Ethnic origin and extrapyramidal signs in an Argentinean spinocerebellar ataxia type 10 family. Neurology 69(2):216–218. doi:10.1212/01.wnl.0000265596.72492.89
Teive HA, Roa BB, Raskin S, Fang P, Arruda WO, Neto YC, Gao R, Werneck LC, Ashizawa T (2004) Clinical phenotype of Brazilian families with spinocerebellar ataxia 10. Neurology 63(8):1509–1512
Teive HA, Munhoz RP, Raskin S, Arruda WO, de Paola L, Werneck LC, Ashizawa T (2010) Spinocerebellar ataxia type 10: Frequency of epilepsy in a large sample of Brazilian patients. Mov Disord: Off J Mov Disord Soc 25(16):2875–2878. doi:10.1002/mds.23324
McFarland KN, Liu J, Landrian I, Gao R, Sarkar PS, Raskin S, Moscovich M, Gatto EM, Teive HA, Ochoa A, Rasmussen A, Ashizawa T (2013) Paradoxical effects of repeat interruptions on spinocerebellar ataxia type 10 expansions and repeat instability. Eur J Human Genet: EJHG 21(11):1272–1276. doi:10.1038/ejhg.2013.32
Cagnoli C, Michielotto C, Matsuura T, Ashizawa T, Margolis RL, Holmes SE, Gellera C, Migone N, Brusco A (2004) Detection of large pathogenic expansions in FRDA1, SCA10, and SCA12 genes using a simple fluorescent repeat-primed PCR assay. J Mol Diagn: JMD 6(2):96–100. doi:10.1016/S1525-1578(10)60496-5
Matsuura T, Ashizawa T (2002) Polymerase chain reaction amplification of expanded ATTCT repeat in spinocerebellar ataxia type 10. Ann Neurol 51(2):271–272
Almeida T, Alonso I, Martins S, Ramos EM, Azevedo L, Ohno K, Amorim A, Saraiva-Pereira ML, Jardim LB, Matsuura T, Sequeiros J, Silveira I (2009) Ancestral origin of the ATTCT repeat expansion in spinocerebellar ataxia type 10 (SCA10). PloS One 4(2):e4553. doi:10.1371/journal.pone.0004553
Braida C, Stefanatos RK, Adam B, Mahajan N, Smeets HJ, Niel F, Goizet C, Arveiler B, Koenig M, Lagier-Tourenne C, Mandel JL, Faber CG, de Die-Smulders CE, Spaans F, Monckton DG (2010) Variant CCG and GGC repeats within the CTG expansion dramatically modify mutational dynamics and likely contribute toward unusual symptoms in some myotonic dystrophy type 1 patients. Hum Mol Genet 19(8):1399–1412. doi:10.1093/hmg/ddq015
Spaans F, Faber CG, Smeets HJ, Hofman PA, Braida C, Monckton DG, de Die-Smulders CE (2009) Encephalopathic attacks in a family co-segregating myotonic dystrophy type 1, an intermediate Charcot–Marie–Tooth neuropathy and early hearing loss. J Neurol Neurosurg Psychiatry 80(9):1029–1035. doi:10.1136/jnnp.2008.170126
Kim JM, Hong S, Kim GP, Choi YJ, Kim YK, Park SS, Kim SE, Jeon BS (2007) Importance of low-range CAG expansion and CAA interruption in SCA2 Parkinsonism. Arch Neurol 64(10):1510–1518. doi:10.1001/archneur.64.10.1510
Charles P, Camuzat A, Benammar N, Sellal F, Destee A, Bonnet AM, Lesage S, Le Ber I, Stevanin G, Durr A, Brice A, French Parkinson's Disease Genetic Study G (2007) Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism? Neurology 69(21):1970–1975. doi:10.1212/01.wnl.0000269323.21969.db
Modoni A, Contarino MF, Bentivoglio AR, Tabolacci E, Santoro M, Calcagni ML, Tonali PA, Neri G, Silvestri G (2007) Prevalence of spinocerebellar ataxia type 2 mutation among Italian Parkinsonian patients. Mov Disord: Off J Mov Disord Soc 22(3):324–327. doi:10.1002/mds.21228
Socal MP, Emmel VE, Rieder CR, Hilbig A, Saraiva-Pereira ML, Jardim LB (2009) Intrafamilial variability of Parkinson phenotype in SCAs: novel cases due to SCA2 and SCA3 expansions. Parkinsonism Relat Disord 15(5):374–378. doi:10.1016/j.parkreldis.2008.09.005
Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, Armakola M, Geser F, Greene R, Lu MM, Padmanabhan A, Clay-Falcone D, McCluskey L, Elman L, Juhr D, Gruber PJ, Rub U, Auburger G, Trojanowski JQ, Lee VM, Van Deerlin VM, Bonini NM, Gitler AD (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466(7310):1069–1075. doi:10.1038/nature09320
Yu Z, Zhu Y, Chen-Plotkin AS, Clay-Falcone D, McCluskey L, Elman L, Kalb RG, Trojanowski JQ, Lee VM, Van Deerlin VM, Gitler AD, Bonini NM (2011) PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats. PloS One 6(3):e17951. doi:10.1371/journal.pone.0017951
Corrado L, Mazzini L, Oggioni GD, Luciano B, Godi M, Brusco A, D'Alfonso S (2011) ATXN-2 CAG repeat expansions are interrupted in ALS patients. Hum Genet 130(4):575–580. doi:10.1007/s00439-011-1000-2
Bonini NM, Gitler AD (2011) Model organisms reveal insight into human neurodegenerative disease: ataxin-2 intermediate-length polyglutamine expansions are a risk factor for ALS. J Mol Neurosci: MN 45(3):676–683. doi:10.1007/s12031-011-9548-9
Ranum LP, Chung MY, Banfi S, Bryer A, Schut LJ, Ramesar R, Duvick LA, McCall A, Subramony SH, Goldfarb L et al (1994) Molecular and clinical correlations in spinocerebellar ataxia type I: evidence for familial effects on the age at onset. Am J Hum Genet 55(2):244–252
Quan F, Janas J, Popovich BW (1995) A novel CAG repeat configuration in the SCA1 gene: implications for the molecular diagnostics of spinocerebellar ataxia type 1. Hum Mol Genet 4(12):2411–2413
Matsuyama Z, Izumi Y, Kameyama M, Kawakami H, Nakamura S (1999) The effect of CAT trinucleotide interruptions on the age at onset of spinocerebellar ataxia type 1 (SCA1). J Med Genet 36(7):546–548
Sakai H, Yoshida K, Shimizu Y, Morita H, Ikeda S, Matsumoto N (2010) Analysis of an insertion mutation in a cohort of 94 patients with spinocerebellar ataxia type 31 from Nagano, Japan. Neurogenetics 11(4):409–415. doi:10.1007/s10048-010-0245-6
Ishikawa K, Durr A, Klopstock T, Muller S, De Toffol B, Vidailhet M, Vighetto A, Marelli C, Wichmann HE, Illig T, Niimi Y, Sato N, Amino T, Stevanin G, Brice A, Mizusawa H (2011) Pentanucleotide repeats at the spinocerebellar ataxia type 31 (SCA31) locus in Caucasians. Neurology 77(20):1853–1855. doi:10.1212/WNL.0b013e3182377e3a
Wakamiya M, Matsuura T, Liu Y, Schuster GC, Gao R, Xu W, Sarkar PS, Lin X, Ashizawa T (2006) The role of ataxin 10 in the pathogenesis of spinocerebellar ataxia type 10. Neurology 67(4):607–613. doi:10.1212/01.wnl.0000231140.26253.eb
White M, Xia G, Gao R, Wakamiya M, Sarkar PS, McFarland K, Ashizawa T (2012) Transgenic mice with SCA10 pentanucleotide repeats show motor phenotype and susceptibility to seizure: a toxic RNA gain-of-function model. J Neurosci Res 90(3):706–714. doi:10.1002/jnr.22786
White MC, Gao R, Xu W, Mandal SM, Lim JG, Hazra TK, Wakamiya M, Edwards SF, Raskin S, Teive HA, Zoghbi HY, Sarkar PS, Ashizawa T (2010) Inactivation of hnRNP K by expanded intronic AUUCU repeat induces apoptosis via translocation of PKCdelta to mitochondria in spinocerebellar ataxia 10. PLoS Genet 6(6):e1000984. doi:10.1371/journal.pgen.1000984