Repair of Genome Destabilizing Lesions

Radiation Research - Tập 164 Số 4 - Trang 345-356 - 2005
Madhava C. Reddy1, Karen M. Vásquez1
1Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park–Res

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1146/annurev.biochem.73.011303.073723

10.1038/35077232

Scharer, O. D. Chemistry and biology of DNA repair. Angew. Chem. Int. Ed. Engl 42:2946–2974.2003.

10.1038/362709a0

Helene, C. Molecular mechanisms for the recognition of damaged DNA regions by peptides and proteins. Adv. Biophys 20:177–186.1985.

Frederico, L. A., T. A. Kunkel, and B. R. Shaw. A sensitive genetic assay for the detection of cytosine deamination: Determination of rate constants and the activation energy. Biochemistry 29:2532–2537.1990.

10.1073/pnas.97.1.103

10.1016/0891-5849(94)00209-3

Lieber, M. R. Pathological and physiological double-strand breaks: Roles in cancer, aging, and the immune system. Am. J. Pathol 153:1323–1332.1998.

Rothkamm, K. and M. Lobrich. Misrepair of radiation-induced DNA double-strand breaks and its relevance for tumorigenesis and cancer treatment. Int. J. Oncol 21:433–440.2002.

Huang, L. C., K. C. Clarkin, and G. M. Wahl. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1arrest. Proc. Natl. Acad. Sci. USA 93:4827–4832.1996.

10.1093/carcin/21.3.453

Bohr, V. A. DNA damage and its processing. relation to human disease. J. Inherit. Metab. Dis 25:215–222.2002.

Lehmann, A. R. DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 85:1101–1111.2003.

Wood, R. D. Human diseases associated with defective DNA excision repair. J. R. Coll. Physicians Lond 25:300–303.1991.

10.1073/pnas.0334858100

Schofield, M. J. and P. Hsieh. DNA mismatch repair: Molecular mechanisms and biological function. Annu. Rev. Microbiol 57:579–608.2003.

Harfe, B. D. and S. Jinks-Robertson. DNA mismatch repair and genetic instability. Annu. Rev. Genet 34:359–399.2000.

Modrich, P. and R. Lahue. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem 65:101–133.1996.

Fishel, R., M. K. Lescoe, M. R. Rao, N. G. Copeland, N. A. Jenkins, J. Garber, M. Kane, and R. Kolodner. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–1038.1993.

Peltomaki, P. and H. F. Vasen. Mutations predisposing to hereditary nonpolyposis colorectal cancer: Database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology 113:1146–1158.1997.

Fedier, A. and D. Fink. Mutations in DNA mismatch repair genes: Implications for DNA damage signaling and drug sensitivity. Int. J. Oncol 24:1039–1047.2004.

Thoma, B. S. and K. M. Vasquez. Critical DNA damage recognition functions of XPC-hHR23B and XPA-RPA in nucleotide excision repair. Mol. Carcinog 38:1–13.2003.

Hanawalt, P. C. Subpathways of nucleotide excision repair and their regulation. Oncogene 21:8949–8956.2002.

Aboussekhra, A., M. Biggerstaff, M. K. Shivji, J. A. Vilpo, V. Moncollin, V. N. Podust, M. Protic, U. Hubscher, J. M. Egly, and R. D. Wood. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80:859–868.1995.

Mu, D., C. H. Park, T. Matsunaga, D. S. Hsu, J. T. Reardon, and A. Sancar. Reconstitution of human DNA repair excision nuclease in a highly defined system. J. Biol. Chem 270:2415–2418.1995.

10.1016/S0921-8777(01)00092-1

10.1016/S0027-5107(02)00224-5

Spielmann, H. P., T. J. Dwyer, S. S. Sastry, J. E. Hearst, and D. E. Wemmer. DNA structural reorganization upon conversion of a psoralen furan-side monoadduct to an interstrand cross-link: Implications for DNA repair. Proc. Natl. Acad. Sci. USA 92:2345–2349.1995.

Morison, W. L. Psoralen ultraviolet A therapy in 2004. Photodermatol. Photoimmunol. Photomed 20:315–320.2004.

Baron, E. D. and S. R. Stevens. Phototherapy for cutaneous T-cell lymphoma. Dermatol. Ther 16:303–310.2003.

Johnson, R., L. Staiano-Coico, L. Austin, I. Cardinale, R. Nabeya-Tsukifuji, and J. G. Krueger. PUVA treatment selectively induces a cell cycle block and subsequent apoptosis in human T-lymphocytes. Photochem. Photobiol 63:566–571.1996.

Wang, S. Q., R. Setlow, M. Berwick, D. Polsky, A. A. Marghoob, A. W. Kopf, and R. S. Bart. Ultraviolet A and melanoma: A review. J. Am. Acad. Dermatol 44:837–846.2001.

Vasquez, K. M. and P. M. Glazer. Triplex-forming oligonucleotides: Principles and applications. Q. Rev. Biophys 35:89–107.2002.

Xodo, L. E., S. Cogoi, and V. Rapozzi. Anti-gene strategies to down-regulate gene expression in mammalian cells. Curr. Pharm. Des 10:805–819.2004.

Vasquez, K. M. and J. H. Wilson. Triplex-directed modification of genes and gene activity. Trends Biochem. Sci 23:4–9.1998.

Vasquez, K. M., L. Narayanan, and P. M. Glazer. Specific mutations induced by triplex-forming oligonucleotides in mice. Science 290:530–533.2000.

Vasquez, K. M., K. Marburger, Z. Intody, and J. H. Wilson. Manipulating the mammalian genome by homologous recombination. Proc. Natl. Acad. Sci. USA 98:8403–8410.2001.

Helene, C., N. T. Thuong, and A. Harel-Bellan. Control of gene expression by triple helix-forming oligonucleotides. The antigene strategy. Ann. NY Acad. Sci 660:27–36.1992.

Majumdar, A., A. Khorlin, N. Dyatkina, F. L. Lin, J. Powell, J. Liu, Z. Fei, Y. Khripine, K. A. Watanabe, and J. George. Targeted gene knockout mediated by triple helix forming oligonucleotides. Nat. Genet 20:212–214.1998.

Faruqi, A. F., H. J. Datta, D. Carroll, M. M. Seidman, and P. M. Glazer. Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol. Cell. Biol 20:990–1000.2000.

Faruqi, A. F., M. M. Seidman, D. J. Segal, D. Carroll, and P. M. Glazer. Recombination induced by triple-helix-targeted DNA damage in mammalian cells. Mol. Cell. Biol 16:6820–6828.1996.

Luo, Z., M. A. Macris, A. F. Faruqi, and P. M. Glazer. High-frequency intrachromosomal gene conversion induced by triplex-forming oligonucleotides microinjected into mouse cells. Proc. Natl. Acad. Sci. USA 97:9003–9008.2000.

Felsenfeld, G., D. R. Davies, and A. Rich. Formation of a three-stranded polynucleotide molecule. J. Am. Chem. Soc 79:2023–2024.1957.

Dervan, P. B. Design of sequence-specific DNA-binding molecules. Science 232:464–471.1986.

Faria, M., C. D. Wood, L. Perrouault, J. S. Nelson, A. Winter, M. R. White, C. Helene, and C. Giovannangeli. Targeted inhibition of transcription elongation in cells mediated by triplex-forming oligonucleotides. Proc. Natl. Acad. Sci. USA 97:3862–3867.2000.

Cooney, M., G. Czernuszewicz, E. H. Postel, S. J. Flint, and M. E. Hogan. Site-specific oligonucleotide binding represses transcription of the human c-myc genein vitro. Science 241:456–459.1988.

Postel, E. H., S. J. Flint, D. J. Kessler, and M. E. Hogan. Evidence that a triplex-forming oligodeoxyribonucleotide binds to the c-myc promoter in HeLa cells, thereby reducing c-myc mRNA levels. Proc. Natl. Acad. Sci. USA 88:8227–8231.1991.

Vasquez, K. M., G. Wang, P. A. Havre, and P. M. Glazer. Chromosomal mutations induced by triplex-forming oligonucleotides in mammalian cells. Nucleic Acids Res 27:1176–1181.1999.

Wang, G., M. M. Seidman, and P. M. Glazer. Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 271:802–805.1996.

Barre, F. X., S. Ait-Si-Ali, C. Giovannangeli, R. Luis, P. Robin, L. L. Pritchard, C. Helene, and A. Harel-Bellan. Unambiguous demonstration of triple-helix-directed gene modification. Proc. Natl. Acad. Sci. USA 97:3084–3088.2000.

Christensen, L. A., C. J. Conti, S. M. Fischer, and K. M. Vasquez. Mutation frequencies in murine keratinocytes as a function of carcinogenic status. Mol. Carcinog 40:122–133.2004.

Vasquez, K. M., T. G. Wensel, M. E. Hogan, and J. H. Wilson. High-efficiency triple-helix-mediated photo-cross-linking at a targeted site within a selectable mammalian gene. Biochemistry 35:10712–10719.1996.

Guieysse, A. L., D. Praseuth, M. Grigoriev, A. Harel-Bellan, and C. Helene. Detection of covalent triplex within human cells. Nucleic Acids Res 24:4210–4216.1996.

10.1089/108729002753670256

Datta, H. J., P. P. Chan, K. M. Vasquez, R. C. Gupta, and P. M. Glazer. Triplex-induced recombination in human cell-free extracts. Dependence on XPA and HsRad51. J. Biol. Chem 276:18018–18023.2001.

Vasquez, K. M., J. Christensen, L. Li, R. A. Finch, and P. M. Glazer. Human XPA and RPA DNA repair proteins participate in specific recognition of triplex-induced helical distortions. Proc. Natl. Acad. Sci. USA 99:5848–5853.2002.

Barre, F. X., C. Giovannangeli, C. Helene, and A. Harel-Bellan. Covalent crosslinks introduced via a triple helix-forming oligonucleotide coupled to psoralen are inefficiently repaired. Nucleic Acids Res 27:743–749.1999.

Guillonneau, F., A. L. Guieysse, S. Nocentini, C. Giovannangeli, and D. Praseuth. Psoralen interstrand cross-link repair is specifically altered by an adjacent triple-stranded structure. Nucleic Acids Res 32:1143–1153.2004.

Guieysse, A. L., D. Praseuth, C. Giovannangeli, U. Asseline, and C. Helene. Psoralen adducts induced by triplex-forming oligonucleotides are refractory to repair in HeLa cells. J. Mol. Biol 296:373–383.2000.

Reddy, M. C., J. Christensen, and K. M. Vasquez. Interplay between human high mobility group protein 1 and replication protein A on psoralen-cross-linked DNA. Biochemistry 44:4188–4195.2005.

Arimondo, P. B., S. Angenault, L. Halby, A. Boutorine, F. Schmidt, C. Monneret, T. Garestier, J. S. Sun, C. Bailly, and C. Helene. Spatial organization of topoisomerase I-mediated DNA cleavage induced by camptothecin-oligonucleotide conjugates. Nucleic Acids Res 31:4031–4040.2003.

Panyutin, I. G., T. A. Winters, L. E. Feinendegen, and R. D. Neumann. Development of DNA-based radiopharmaceuticals carrying Auger-electron emitters for anti-gene radiotherapy. Q. J. Nucl. Med 44:256–267.2000.

Phillips, T. L. 50 years of radiation research: Medicine. Radiat. Res 158:389–417.2002.

Nishimura, Y. Rationale for chemoradiotherapy. Int. J. Clin. Oncol 9:414–420.2004.

Cole, R. S. Repair of DNA containing interstrand crosslinks inEscherichia coli: Sequential excision and recombination. Proc. Natl. Acad. Sci. USA 70:1064–1068.1973.

Sladek, F. M., M. M. Munn, W. D. Rupp, and P. Howard-Flanders.In vitrorepair of psoralen-DNA cross-links by RecA, UvrABC, and the 5′-exonuclease of DNA polymerase I. J. Biol. Chem 264:6755–6765.1989.

Cole, R. S., D. Levitan, and R. R. Sinden. Removal of psoralen interstrand cross-links from DNA ofEscherichia coli: Mechanism and genetic control. J. Mol. Biol 103:39–59.1976.

Cheng, S., A. Sancar, and J. E. Hearst. RecA-dependent incision of psoralen-crosslinked DNA by (A)BC excinuclease. Nucleic Acids Res 19:657–663.1991.

Van Houten, B., H. Gamper, S. R. Holbrook, J. E. Hearst, and A. Sancar. Action mechanism of ABC excision nuclease on a DNA substrate containing a psoralen crosslink at a defined position. Proc. Natl. Acad. Sci. USA 83:8077–8081.1986.

Berardini, M., W. Mackay, and E. L. Loechler. Evidence for a recombination-independent pathway for the repair of DNA interstrand cross-links based on a site-specific study with nitrogen mustard. Biochemistry 36:3506–3513.1997.

Berardini, M., P. L. Foster, and E. L. Loechler. DNA polymerase II (polB) is involved in a new DNA repair pathway for DNA interstrand cross-links inEscherichia coli. J. Bacteriol 181:2878–2882.1999.

Vasquez, K. M., J. M. Dagle, D. L. Weeks, and P. M. Glazer. Chromosome targeting at short polypurine sites by cationic triplex-forming oligonucleotides. J. Biol. Chem 276:38536–38541.2001.

Havre, P. A., E. J. Gunther, F. P. Gasparro, and P. M. Glazer. Targeted mutagenesis of DNA using triple helix-forming oligonucleotides linked to psoralen. Proc. Natl. Acad. Sci. USA 90:7879–7883.1993.

10.1093/nar/20.2.307

Majumdar, A., N. Puri, B. Cuenoud, F. Natt, P. Martin, A. Khorlin, N. Dyatkina, A. J. George, and M. M. Seidman. Cell cycle modulation of gene targeting by a triple helix-forming oligonucleotide. J. Biol. Chem 278:11072–11077.2003.

Vasquez, K. M., T. G. Wensel, M. E. Hogan, and J. H. Wilson. High-affinity triple helix formation by synthetic oligonucleotides at a site within a selectable mammalian gene. Biochemistry 34:7243–7251.1995.

Averbeck, D. and S. Averbeck. DNA photodamage, repair, gene induction and genotoxicity following exposures to 254 nm UV and 8-methoxypsoralen plus UVA in a eukaryotic cell system. Photochem. Photobiol 68:289–295.1998.

Saffran, W. A., C. R. Cantor, E. D. Smith, and M. Magdi. Psoralen damage-induced plasmid recombination inSaccharomyces cerevisiae: Dependence on RAD1 and RAD52. Mutat. Res 274:1–9.1992.

Vos, J. M. and P. C. Hanawalt. DNA interstrand cross-links promote chromosomal integration of a selected gene in human cells. Mol. Cell Biol 9:2897–2905.1989.

Hall, J. D. and K. Scherer. Repair of psoralen-treated DNA by genetic recombination in human cells infected with herpes simplex virus. Cancer Res 41:5033–5038.1981.

10.1128/MCB.22.7.2388-2397.2002

Wu, Q., L. A. Christensen, R. J. Legerski, and K. M. Vasquez. Mismatch repair participates in an error-free processing of DNA interstrand crosslinks in human cells. EMBO Rept 6:551–557.2005.

10.1038/85798

10.1038/35056049

Cromie, G. A., J. C. Connelly, and D. R. Leach. Recombination at double-strand breaks and DNA ends: Conserved mechanisms from phage to humans. Mol. Cell 8:1163–1174.2001.

Haber, J. E. Partners and pathways repairing a double-strand break. Trends Genet 16:259–264.2000.

10.1093/emboj/17.18.5497

Lee, S. E., R. A. Mitchell, A. Cheng, and E. A. Hendrickson. Evidence for DNA-PK-dependent and -independent DNA double-strand break repair pathways in mammalian cells as a function of the cell cycle. Mol. Cell Biol 17:1425–1433.1997.

Damia, G., L. Imperatori, M. Stefanini, and M. D'Incalci. Sensitivity of CHO mutant cell lines with specific defects in nucleotide excision repair to different anti-cancer agents. Int. J. Cancer 66:779–783.1996.

Kuraoka, I., W. R. Kobertz, R. R. Ariza, M. Biggerstaff, J. M. Essigmann, and R. D. Wood. Repair of an interstrand DNA cross-link initiated by ERCC1-XPF repair/recombination nuclease. J. Biol. Chem 275:26632–26636.2000.

Bessho, T., A. Sancar, L. H. Thompson, and M. P. Thelen. Reconstitution of human excision nuclease with recombinant XPF-ERCC1 complex. J. Biol. Chem 272:3833–3837.1997.

Sijbers, A. M., W. L. de Laat, R. R. Ariza, M. Biggerstaff, Y. F. Wei, J. G. Moggs, K. C. Carter, B. K. Shell, E. Evans, and R. D. Wood. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86:811–822.1996.

van Duin, M., J. de Wit, H. Odijk, A. Westerveld, A. Yasui, H. M. Koken, J. H. Hoeijmakers, and D. Bootsma. Molecular characterization of the human excision repair gene ERCC-1: cDNA cloning and amino acid homology with the yeast DNA repair gene RAD10. Cell 44:913–923.1986.

Bardwell, L., A. J. Cooper, and E. C. Friedberg. Stable and specific association between the yeast recombination and DNA repair proteins RAD1 and RAD10in vitro. Mol. Cell. Biol 12:3041–3049.1992.

Fishman-Lobell, J. and J. E. Haber. Removal of nonhomologous DNA ends in double-strand break recombination: The role of the yeast ultraviolet repair gene RAD1. Science 258:480–484.1992.

10.1038/sj.onc.1203953

De Silva, I. U., P. J. McHugh, P. H. Clingen, and J. A. Hartley. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol. Cell. Biol 20:7980–7990.2000.

Erickson, L. C., G. Laurent, N. A. Sharkey, and K. W. Kohn. DNA cross-linking and monoadduct repair in nitrosourea-treated human tumour cells. Nature 288:727–729.1980.

Huerta, S., D. M. Harris, A. Jazirehi, B. Bonavida, D. Elashoff, E. H. Livingston, and D. Heber. Gene expression profile of metastatic colon cancer cells resistant to cisplatin-induced apoptosis. Int. J. Oncol 22:663–670.2003.

Chang, B. K., R. Gutman, and T. C. Chou. Schedule-dependent interaction of alpha-difluoromethylornithine and cis-diamminedichloroplatinum(II) against human and hamster pancreatic cancer cell lines. Cancer Res 47:2247–2250.1987.

Siddik, Z. H. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279.2003.

Bustin, M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol. Cell. Biol 19:5237–5246.1999.

10.1016/S0968-0004(01)01801-1

Reeves, R. Molecular biology of HMGA proteins: Hubs of nuclear function. Gene 277:63–81.2001.

Bustin, M., L. Trieschmann, and Y. V. Postnikov. The HMG-14/-17 chromosomal protein family: Architectural elements that enhance transcription from chromatin templates. Semin. Cell Biol 6:247–255.1995.

Mosevitsky, M. I., V. A. Novitskaya, M. G. Iogannsen, and M. A. Zabezhinsky. Tissue specificity of nucleo-cytoplasmic distribution of HMG1 and HMG2 proteins and their probable functions. Eur. J. Biochem 185:303–310.1989.

Prasad, S. and M. K. Thakur. Distribution of high mobility group proteins in different tissues of rats during aging. Biochem. Int 20:687–695.1990.

Sheflin, L. G., N. W. Fucile, and S. W. Spaulding. The specific interactions of HMG 1 and 2 with negatively supercoiled DNA are modulated by their acidic C-terminal domains and involve cysteine residues in their HMG 1/2 boxes. Biochemistry 32:3238–3248.1993.

Bustin, M. and R. Reeves. High-mobility-group chromosomal proteins: Architectural components that facilitate chromatin function. Prog. Nucleic Acid Res. Mol. Biol 54:35–100.1996.

10.1016/S0014-5793(03)01027-5

Calogero, S., F. Grassi, A. Aguzzi, T. Voigtlander, P. Ferrier, S. Ferrari, and M. E. Bianchi. The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat. Genet 22:276–280.1999.

Ronfani, L., M. Ferraguti, L. Croci, C. E. Ovitt, H. R. Scholer, G. G. Consalez, and M. E. Bianchi. Reduced fertility and spermatogenesis defects in mice lacking chromosomal protein Hmgb2. Development 128:1265–1273.2001.

Pil, P. M. and S. J. Lippard. Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science 256:234–237.1992.

Lanuszewska, J. and P. Widlak. High mobility group 1 and 2 proteins bind preferentially to DNA that contains bulky adducts induced by benzo[a]pyrene diol epoxide and N-acetoxy-acetylaminofluorene. Cancer Lett 158:17–25.2000.

Wang, J. F., M. Bashir, B. N. Engelsberg, C. Witmer, H. Rozmiarek, and P. C. Billings. High mobility group proteins 1 and 2 recognize chromium-damaged DNA. Carcinogenesis 18:371–375.1997.

Pasheva, E. A., I. G. Pashev, and A. Favre. Preferential binding of high mobility group 1 protein to UV-damaged DNA. Role of the COOH-terminal domain. J. Biol. Chem 273:24730–24736.1998.

Bianchi, M. E., M. Beltrame, and G. Paonessa. Specific recognition of cruciform DNA by nuclear protein HMG1. Science 243:1056–1059.1989.

Jayaraman, L., N. C. Moorthy, K. G. Murthy, J. L. Manley, M. Bustin, and C. Prives. High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev 12:462–472.1998.

McKinney, K. and C. Prives. Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol. Cell Biol 22:6797–6808.2002.

He, Q., C. H. Liang, and S. J. Lippard. Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc. Natl. Acad. Sci. USA 97:5768–5772.2000.

Huang, J. C., D. B. Zamble, J. T. Reardon, S. J. Lippard, and A. Sancar. HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc. Natl. Acad. Sci. USA 91:10394–10398.1994.

Krynetski, E. Y., N. F. Krynetskaia, M. E. Bianchi, and W. E. Evans. A nuclear protein complex containing high mobility group proteins B1 and B2, heat shock cognate protein 70, ERp60, and glyceraldehyde-3-phosphate dehydrogenase is involved in the cytotoxic response to DNA modified by incorporation of anticancer nucleoside analogues. Cancer Res 63:100–106.2003.