Reorientation of Hydrides in Unirradiated Clad Tubes Made of Alloy E110 under Conditions Simulating Long-Term Dry Storage of Spent Nuclear Fuel
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. A. Shmakov, B. A. Kalin, and E. A. Smirnov, Hydrogen in Zirconium Alloys (LAMBERT Academic Publishing, Saarbrucken, 2014).
A. A. Shmakov, B. A. Kalin, and E. A. Smirnov, “On the possibility of hydride cracking of fuel element cladding in light water reactors,” Inzh. Fiz. 1, 60–62 (1999).
A. T. Motta, L. Capolungo, L. Q. Chen, M. N. Cinbiz, M. R. Daymond, D. A. Koss, E. Lacroix, G. Pastore, P. C. A. Simon, M. R. Tonks, B. D. Wirth, and M. A. Zikry, “Hydrogen in zirconium alloys: a review,” J. Nucl. Mater. 518, 440–460 (2019).
M. Aomi, T. Baba, T. Miyashita, K. Kamimura, T. Yasuda, Y. Shinohara, and T. Takeda, “Evaluation of hydride reorientation behavior and mechanical properties for high-burnup fuel-cladding tubes in interim dry storage,” J. ASTM Int. 5, No. 9, 651–673 (2008).
J. M. Lee, H. A. Kim, D. H. Kook, and Y. S. Kim, “A study on the effects of hydrogen content and peak temperature on threshold stress for hydride reorientation in Zircaloy-4 cladding,” J. Nucl. Mater. 509, 285–294 (2018).
Q. Auzoux, P. Bouffioux, A. Machiels, S. Yagnik, B. Bourdiliau, C. Mallet, N. Mozzani, and K. Colas, “Hydride reorientation and its impact on ambient temperature mechanical properties of high burn-up irradiated and unirradiated recrystallized Zircaloy-2 nuclear fuel cladding with an inner liner,” J. Nucl. Mater. 494, 114–126 (2017).
H. J. Cha, J. J. Won, K. N. Jang, J. H. An, and K. T. Kim, “Tensile hoop stress-, hydrogen content- and cooling rate-dependent hydride reorientation behaviors of Zr alloy cladding tubes,” J. Nucl. Mater. 464, 53–60 (2015).
J. Desquines, D. Drouan, M. Billone, M. P. Puls, P. March, S. Fourgeaud, C. Getrey, V. Elbaz, and M. Philippe, “Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding,” J. Nucl. Mater. 453, Nos. 1–3, 131–150 (2014).
WWER-440 Fuel Rod Experiments Under Simulated Dry Storage Conditions (International Atomic Energy Agency, Vienna, 2004), IAEA-TECDOC-1385.
T. P. Chernyaeva, V. M. Gritsina, V. S. Krasnorutskii, A. P. Redkina, I. A. Petelguzov, and E. A. Slabospitskaya, “Effects of Zr-1%Nb fuel rod cladding temperature and stressed conditions on hydridere orientation,” Probl. At. Sci. Technol. 113, No. 1, 189–202 (2018).
G. V. Kulakov, A. V. Vatulin, Yu. V. Konovalov, A. A. Kosaurov, M. M. Peregud, E. A. Korotchenko, V. Yu. Shishin, and A. A. Shel’dyakov, “Analysis of the effect of the stress-strain state of irradiated zirconium-alloy fuel-element cladding on hydride orientation,” At. Energy 122, No. 2, 87–92 (2017).
S. J. Min, J. J. Won, and K. T. Kim, “Terminal cool-down temperature-dependent hydride reorientations in Zr–Nb alloy claddings under dry storage conditions,” J. Nucl. Mater. 448, Nos. 1–3, 172–183 (2014).
D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Springer, New York, 2009).
H. Kurata, S. Isoda, and T. Kobayashi, “Chemical mapping by energy-filtering transmission electron microscopy,” J. Electron Microsc. 45, No. 4, 317–320 (1996).
http://www.icdd.com/translation/rus/pdf2.htm.
A. S. Frolov, E. V. Krikun, K. E. Prikhodko, and E. A. Kuleshova, “Development of the DIFFRACALC program for analyzing the phase composition of alloys,” Crystallogr. Rep. 62, No. 5, 809–815 (2017).
L. Yegorova, V. Asmolov, G. Abyshov, V. Molofeev, A. Avvakumov, E. Kaplar, K. Lioutov, A. Shestopalov, A. Bortash, L. Maiorov, K. Mikitiouk, V. Polvanov, V. Smirnov, A. Goryachev, V. Prokhorov, V. Pakhnitz, and A. Vurim, “Database on the behavior of high burnup fuel rods with Zr–1% Nb cladding and UO2 fuel (VVER type) under reactivity accident conditions,” Description of Test Procedures and Analytical Methods. NUREG/IA-0156 2 (1999).
D. Khatamian and V. C. Ling, “Hydrogen solubility limits in α- and β-zirconium,” J. Alloys Compd. 253–254, 162–166 (1997).
D. Khatamian, “Solubility and partitioning of hydrogen in metastable Zr-based alloys used in the nuclear industry,” J. Alloys Compd. 293, 893–899 (1999).
Z. Zhao, M. Blat-Yrieix, J. P. Morniroli, A. Legris, L. Thuinet, Y. Kihn, A. Ambard, and L. Legras, “Characterization of zirconium hydrides and phase field approach to a mesoscopic-scale modeling of their precipitation,” J. ASTM Int. 5, No. 3, 29–50 (2008).
R. S. Daum, Y. S. Chu, and A. T. Motta, “Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction,” J. Nucl. Mater. 392, 453–463 (2009).
Z. Zhao, J. P. Morniroli, A. Legris, A. Ambard, Y. Kihn, L. Legras, and M. Blat-Yrieix, “Identification and characterization of a new zirconium hydride,” J. Microsc. 232, No. 3, 410–421 (2008).
S. S. Sidhu, MurthyN. S. Satya, F. P. Campos, and D. Zauberis, Neutron and X-ray Diffraction Studies of Nonstoichiometric Metal Hydrides. ANL-FGF-332 (1962).
R. C. Jr. Bowman, B. D. Craft, J. S. Cantrell, and E. L. Venturini, “Effects of thermal treatments on the lattice properties and electronic structure of ZrHx,” Phys. Rev. B 31, 5604–5615 (1985).
O. T. Woo and G. J. C. Carpenter, “EELS characterization of zirconium hydrides,” Microsc. Microanal. Microstruct. 3, 35–44 (1992).
J. J. Kearns and C. R. Woods, “Effect of texture, grain size, and cold work on the precipitation of oriented hydrides in Zircaloy tubing and plate,” J. Nucl. Mater. 20, No. 3, 241–261 (1966).
S. Alyokhina, “Thermal analysis of certain accident conditions of dry spent nuclear fuel storage,” Nucl. Eng. Technol. 50, No. 5, 717–723 (2018).
M. Christensen, W. Wolf, C. Freeman, E. Wimmer, R. B. Adamson, L. Hallstadius, P. E. Cantonwine, and E. V. Mader, “Diffusion of point defects, nucleation of dislocation loops, and effect of hydrogen in hcp-Zr: Ab initio and classical simulations,” J. Nucl. Mater. 460, 82–96 (2015).
F. Pazdera and J. Belac, “Safety criteria and their comparison between WWER and PWR,” 5th Int. Conf. on WWER Fuel Peformance, Modelling and Experimental Support (Albena, 2003).