Renormalization Group Method. Applications to Partial Differential Equations

Springer Science and Business Media LLC - Tập 13 - Trang 275-321 - 2001
I. Moise1, M. Ziane2
1Department of Mathematics, University of Texas, Austin
2Department of Mathematics, Texas A&M University, College Station

Tóm tắt

Our aim in this article is to present a simplified form of the renormalization group (RG) method introduced by Chen, Goldenfeld, and Oono and to derive a rigorous study of the validity in time of the asymptotic solutions furnished by the RG method. We apply the renormalization group method to a slightly compressible fluid equation and to the Swift–Hohenberg equation.

Tài liệu tham khảo

Arnold, V. I. (1965). Small denominators. I. Mappings on the circumference onto itself. Am. Math. Soc. Transl. Ser. 2 46, 213-284. Arnold, V. I. (1988). Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York-Berlin. Babin, A., Mahalov, A., and Nicolaenko, B. (1996). Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating fluids. Eur. J. Mech. B Fluids 15, 291-300. Babin, A., Mahalov, A., and Nicolaenko, B. (1997). Regularity and integrability of 3D Euler and Navier-Stokes equations for rotating fluids. Asymptot. Anal. 15, 103-150. Barenblatt, G. I. (1979). Similarity, Self-Similarity, and Intermediate Asymptotics, Consultants Bureau, New York-London. Benfatto, G., and Gallavotti, G. (1995). Renormalization Group, Princeton University Press, Princeton, New Jersey. Bogoliubov, N. N., and Mitropolsky, Y. A. (1961). Asymptotic Methods in the Theory of Non-linear Oscillations, Gordon and Breach Science, New York. Bourgeois, A., and Beale, J. T. (1994). Validity of the quasi geostrophic model for large-scale flow in the atmosphere and ocean. SIAM J. Math. Anal. 25, 1023-1068. Bricmont, J., and Kupiainen, A. (1992). Renormalization group and the Ginzburg-Landau equation. Comm. Math. Phys. 150, 193-208. Bricmont, J., Kupiainen, A., and Lin, G. (1994). Renormalization group and asymptotics of solutions of nonlinear parabolic equations. Comm. Pure Appl. Math. 47, 893-922. Chen, L.-Y., Goldenfeld, N., and Oono, Y. (1991). Asymptotics of partial differential equations and the renormalization group. NATO Adv. Sci. Inst. Ser. B Phys. 284, 375-383. Chen, L.-Y., Goldenfeld, N., and Oono, Y. (1994). Renormalization group theory for global asymptotic analysis. Phys. Rev. Lett. 73, 1311-1315. Chen, L.-Y., Goldenfeld, N., and Oono, Y. (1997). The renormalization group and singular perturbations: Multiple scales, boundary layers and reductive perturbation theory. Phys. Rev. E. 54, 376-394. Chorin, A. J. (1967). The numerical solutions of the Navier-Stokes equation for an incompressible fluid. Bull. Am. Math. Soc. 73, 928-931. Collet, P. (1991). Amplitude analysis of the Swift-Hohenberg equation. Eur. J. Mech. B Fluids 10, 119-124. Collet, P., and Eckmann, J.-P. (1990). Instabilities and Fronts in Extended Systems, Princeton University Press, Princeton, New Jersey. Collet, P., and Eckmann, J.-P. (1990). The time dependent amplitude equation for the Swift-Hohenberg problem. Comm. Math. Phys. 132, 139-153. Eckmann, J.-P., and Wayne, E. (1991). Propagating fronts and the center manifold theorem. Comm. Math. Phys. 136, 285-307. Embid, P. F., and Majda, A. J. (1996). Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity. Comm. Part. Diff. Eqs. 21, 619-658. Gallagher, I. (1997). Existence globale pour des équations des fluides ge-ostrophiques. C.R. Acad. Sci. Paris Ser. I Math. 325, 623-626. Goldenfeld, N. Private communication. Goldenfeld, N. (1992). Lectures on Phase Transitions and the Renormalization Group, Addison-Wesley, Reading, Massachusetts. Grenier, E. (1995). Fluides en rotation et ondes d'inertie. C.R. Acad. Sci. Paris Ser. I Math. 321, 711-714. Grenier, E. (1997). Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl. (9) 76, 477-498. Klainerman, S., and Majda, A. (1981). Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. 34, 481-524. Klainerman, S., and Majda, A. (1982). Compressible and incompressible fluids. Comm. Pure Appl. Math. 35, 629-651. Kreiss, H.-O., Lorenz, J., and Naughton, M. J. (1991). Convergence of the solutions of the compressible to the solutions of the incompressible Navier-Stokes equations. Adv. Appl. Math. 12, 187-214. Matsuba, K., and Nozaki, K. (1997). Derivation of amplitude equations by the renormalization group method. Phys. Rev. E. 56, 4926-4927. Moise, I., Simonnet, E., Temam, R., and Ziane, M. (1998). Numerical simulations of differential systems displaying rapidly oscillating solutions. J. Eng. Math. 34, 201-214. Moise, I., and Ziane, M. (1998). The renormalization group method. Application to rotating fluids. Preprint. Institute for Scientific Computing and Applied Mathematics, Indiana University. Sasa, S. (1997). Renormalization group derivation of phase equations. Phys. D 108, 45-59. Schochet, S. (1986). The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit. Comm. Math. Phys. 104, 49-75. Schochet, S. (1988). Asymptotics for symmetric hyperbolic systems with a large parameter. J. Diff. Eqs. 75, 1-27. Schochet, S. (1994). Fast singular limits of hyperbolic PDEs. J. Diff. Eqs. 114, 476-512. Swift, J., and Hohenberg, P. C. (1977). Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319-328. Temam, R. (1969). Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. I. Arch. Ration. Mech. Anal. 32, 135-153. Temam, R. (1969). Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II. Arch. Ration. Mech. Anal. 33, 377-385. Temam, R. (1997). Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Springer-Verlag, New York. Ukai, S. (1986). The incompressible limit and the initial layer of the compressible Euler equation. J. Math. Kyoto Univ. 26, 323-331. Yanenko, N. N. (1971). The Method of Fractional Steps. The Solution of Problems of Mathematical Physics in Several Variables, Springer-Verlag, New York-Heidelberg. Ziane, M. (2000). On a certain renormalization group method. J. Math. Phys. 41, 3290-3299.