Renewable Power-to-Gas: A technological and economic review

Renewable Energy - Tập 85 - Trang 1371-1390 - 2016
Manuel Götz1, Jonathan Lefebvre2, Friedemann Mörs1, Amy McDaniel Koch1, Frank Graf1, Siegfried Bajohr2, R. Reimert2, Thomas Kolb2
1DVGW Research Center at the Engler-Bunte-Institute of the Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 1, 76131 Karlsruhe, Germany
2Karlsruhe Institute of Technology, Engler-Bunte-Institute, Fuel Technology, Engler-Bunte-Ring 1, 76131 Karlsruhe, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zervos, 2011

World Wind Energy Association (WWEA): WWEC2014: Key Statistics of World Wind Energy Report published. URL http://www.wwindea.org/wwec2014-key-statistics-of-world-wind-energy-report-published/.(accessed 10.06.15).

Global Wind Energy Council (GWEC), 2014

Wallbrecht, 2006

Observ'ER, 2013

Jentsch, 2014, Optimal use of Power-to-Gas energy storage systems in an 85% renewable energy scenario, Energy Procedia, 46, 254, 10.1016/j.egypro.2014.01.180

Hashimoto, 1999, Global CO2 recycling—novel materials and prospect for prevention of global warming and abundant energy supply, Mater. Sci. Eng. A, 267, 200, 10.1016/S0921-5093(99)00092-1

Hashimoto, 2014, The production of renewable energy in the form of methane using electrolytic hydrogen generation, Energ. Sustain. Soc., 4, 1, 10.1186/s13705-014-0017-5

Pleßmann, 2014, Global Energy Storage Demand for a 100% Renewable Electricity Supply, Energy Procedia, 46, 22, 10.1016/j.egypro.2014.01.154

de Boer, 2014, The application of Power-to-Gas, pumped hydro storage and compressed air energy storage in an electricity system at different wind power penetration levels, Energy, 72, 360, 10.1016/j.energy.2014.05.047

Newton, 2014, Power-to-Gas and Methanation – pathways to a 'Hydrogen Economy'

Sterner, 2010, Bioenergy and Renewable Power Methane in Integrated 100% Renewable Energy Systems: Limiting Global Warming by Transforming Energy Systems, 14

Specht, 2010, storage of renewable energy in the natural gas grid, Erdöl Erdgas Kohle, 126, 342

Hoekman, 2010, CO2 recycling by reaction with renewably-generated hydrogen, Int. J. Greenh. Gas Control, 4, 44, 10.1016/j.ijggc.2009.09.012

Graf, 2011, Injection of biogas, SNG and hydrogen into the gas grid, gwf-Gas Erdgas, 2, 30

Götz, 2011, Speicherung von regenerativ erzeugter elektrischer Energie in der Erdgasinfrastruktur, gwf-Gas Erdgas, 152, 200

Götz, 2011

Budzianowski, 2012, Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs, Renew. Sustain. Energy Rev., 16, 6507, 10.1016/j.rser.2012.08.016

Centi, 2014, Perspectives and state of the art in producing solar fuels and chemicals from CO2, 1

Iglesias G, 2015, Chemical energy storage in gaseous hydrocarbons via iron Fischer–Tropsch synthesis from H2/CO2—Kinetics, selectivity and process considerations, Catal. Today, 242, 184, 10.1016/j.cattod.2014.05.020

Schaub, 2013, chemical storage of renewable electricity via hydrogen – principles and hydrocarbon fuels as an example, 619

Habisreutinger, 2013, Photocatalytic reduction of CO2 on TiO2 and other semiconductors, Angew. Chem. Int. Ed., 52, 7372, 10.1002/anie.201207199

Kreuter, 1998, Electrolysis: the important energy transformer in a world of sustainable energy, Int. J. Hydrogen Energy, 23, 661, 10.1016/S0360-3199(97)00109-2

Smolinka, 2011

Bhandari, 2014, Life cycle assessment of hydrogen production via electrolysis – a review, J. Clean. Prod., 85, 151, 10.1016/j.jclepro.2013.07.048

Gahleitner, 2013, Hydrogen from renewable electricity: an international review of Power-to-Gas pilot plants for stationary applications, Int. J. Hydrogen Energy, 38, 2039, 10.1016/j.ijhydene.2012.12.010

Ulleberg, 2010, The wind/hydrogen demonstration system at Utsira in Norway: evaluation of system performance using operational data and updated hydrogen energy system modeling tools, Int. J. Hydrogen Energy, 35, 1841, 10.1016/j.ijhydene.2009.10.077

Graf, 2014

Ursua, 2012, hydrogen production from water electrolysis: current status and future trends, Proc. IEEE, 100, 410, 10.1109/JPROC.2011.2156750

Carmo, 2013, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy, 38, 4901, 10.1016/j.ijhydene.2013.01.151

Hacker, 2015, Arbeitspaket 1b: systemoptimierung und Betriebsführung der PEM-Elektrolyse, energie|wasser-praxis, 65, 37

Gazey, 2006, A field application experience of integrating hydrogen technology with wind power in a remote island location, J. Power Sources, 157, 841, 10.1016/j.jpowsour.2005.11.084

Müller-Syring, 2013

Sterner, 2014

Siemens: “Grüner” Wasserstoff. URL http://www.industry.siemens.com/topics/global/de/magazine/process-news/antriebstechnik/seiten/pem-elektrolyse.aspx.(accessed 10.06.15).

Proton Onsite: M1, M2. URL http://protononsite.com/products/m/#tab-overview.(accessed 10.06.15).

Reytier, 2014

Brisse, 2008, High temperature water electrolysis in solid oxide cells, Int. J. Hydrogen Energy, 33, 5375, 10.1016/j.ijhydene.2008.07.120

Laguna-Bercero, 2012, Recent advances in high temperature electrolysis using solid oxide fuel cells: a review, J. Power Sources, 203, 4, 10.1016/j.jpowsour.2011.12.019

Pozzo, 2015, Enhanced biomass-to-liquid (BTL) conversion process through high temperature co-electrolysis in a solid oxide electrolysis cell (SOEC), Fuel, 145, 39, 10.1016/j.fuel.2014.12.066

M. Landgraf: Press Release – Power to Gas: Storing the Wind and Sun in Natural Gas. URL http://www.helmeth.eu/images/joomlaplates/documents/KIT_PI_2014_044_engl_Power_to_Gas_Storing_the_Wind_and_Sun_in_Natural_Gas.pdf (accessed 10.06.15).

De Saint Jean, 2014, Parametric study of an efficient renewable power-to-substitute-natural-gas process including high-temperature steam electrolysis, Int. J. Hydrogen Energy, 39, 17024, 10.1016/j.ijhydene.2014.08.091

Anghilante, 2014

Giglio, 2015, Synthetic natural gas via integrated high-temperature electrolysis and methanation: part I—Energy performance, J. Energy Storage, 1, 22, 10.1016/j.est.2015.04.002

Buttler, 2015, A detailed techno-economic analysis of heat integration in high temperature electrolysis for efficient hydrogen production, Int. J. Hydrogen Energy, 40, 38, 10.1016/j.ijhydene.2014.10.048

Zakeri, 2015, Electrical energy storage systems: a comparative life cycle cost analysis, Renew. Sustain. Energy Rev., 42, 569, 10.1016/j.rser.2014.10.011

Bodner, 2014, H2 generation from alkaline electrolyzer, Wiley Interdiscip. Rev. Energy Environ., 4, 365

Doenitz, 1980, Hydrogen production by high temperature electrolysis of water vapour, Int. J. Hydrogen Energy, 5, 55, 10.1016/0360-3199(80)90114-7

E&E Consultant, 2014

Roes, 2011, Ex-ante environmental assessments of novel technologies – Improved caprolactam catalysis and hydrogen storage, J. Clean. Prod., 19, 1659, 10.1016/j.jclepro.2011.05.010

Schoenung, 2011, Economic analysis of large-scale hydrogen storage for renewable utility applications, 8

Cerbe, 2008

Fujita, 1997, Difference in the selectivity of CO and CO2 methanation reactions, Chem. Eng. J., 68, 63, 10.1016/S1385-8947(97)00074-0

Weatherbee, 1982, Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel, J. Catal., 77, 460, 10.1016/0021-9517(82)90186-5

Müller, 2013, Sabatier-based CO2-methanation by catalytic conversion, Environ. Earth Sci., 1

Mills, 1974, Catalytic Methanation, Catal. Rev., 8, 159, 10.1080/01614947408071860

Inui, 1979, Methanation of CO2 and CO on supported nickel-based composite catalysts, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 75, 787

Götz, 2014

Lefebvre, 2015, Improvement of three-phase methanation reactor performance for steady-state and transient operation, Fuel Process. Technol., 132, 83, 10.1016/j.fuproc.2014.10.040

Sabatier, 1902, 514

Chiang, 1983, Kinetics of the hydrogenation of carbon dioxide over supported nickel, Industrial Eng. Chem. Prod. Res. Dev., 22, 225, 10.1021/i300010a011

Kaltenmaier, 1988

Fujita, 1991, Mechanisms of methanation of carbon monoxide and carbon dioxide over nickel, Industrial Eng. Chem. Res., 30, 1146, 10.1021/ie00054a012

Kopyscinski, 2010, Production of synthetic natural gas (SNG) from coal and dry biomass – A technology review from 1950 to 2009, Fuel, 89, 1763, 10.1016/j.fuel.2010.01.027

Vannice, 1977, Catalytic synthesis of hydrocarbons from carbon monoxide and hydrogen, 15

Barbarossa, 2011, Methanation of carbon dioxide

Bartholomew, 2001, Mechanisms of catalyst deactivation, Appl. Catal. A General, 212, 17, 10.1016/S0926-860X(00)00843-7

Schaaf, 2014, Methanation of CO2 – storage of renewable energy in a gas distribution system, Energ Sustain Soc., 4, 10.1186/s13705-014-0029-1

Schaaf, 2014, Speicherung von elektrischer Energie im Erdgasnetz – Methanisierung von CO2-haltigen Gasen, Chem. Ing. Tech., 86, 476, 10.1002/cite.201300144

Kiendl, 2014, Dilute gas methanation of synthesis gas from biomass gasification, Fuel, 123, 211, 10.1016/j.fuel.2014.01.036

Patent DE102011121930 A1. (2013). M. Buxbaum.

Seemann, 2010, Fluidized bed methanation of wood-derived producer gas for the production of synthetic natural gas, Industrial Eng. Chem. Res., 49, 7034, 10.1021/ie100510m

Kopyscinski, 2011, Methanation in a fluidized bed reactor with high initial CO partial pressure: part I—Experimental investigation of hydrodynamics, mass transfer effects, and carbon deposition, Chem. Eng. Sci., 66, 924, 10.1016/j.ces.2010.11.042

Rönsch, 2011, Methanisierung von Synthesegasen – Grundlagen und Verfahrensentwicklungen, Chem. Ing. Tech., 83, 1200, 10.1002/cite.201100013

Götz, 2013, Einsatz eines Blasensäulenreaktors zur Methansynthese, Chem. Ing. Tech., 85, 1, 10.1002/cite.201200212

Götz, 2013, Evaluation of organic and ionic liquids for three-phase methanation and biogas purification processes, Energy & Fuels, 27, 4705, 10.1021/ef400334p

Zhang, 2014, Low-temperature methanation of syngas in slurry phase over Zr-doped Ni/γ-Al2O3 catalysts prepared using different methods, Fuel, 132, 211, 10.1016/j.fuel.2014.04.085

Meng, 2015, Effect of promoter Ce on the structure and catalytic performance of Ni/Al2O3 catalyst for CO methanation in slurry-bed reactor, J. Nat. Gas Sci. Eng., 23, 250, 10.1016/j.jngse.2015.01.041

Götz, 2015, Long-term thermal stability of selected ionic liquids in nitrogen and hydrogen atmosphere, Thermochim. Acta, 600, 82, 10.1016/j.tca.2014.11.005

Janke, 2014, Catalytic and adsorption studies for the hydrogenation of CO2 to methane, Appl. Catal. B Environ., 152–153, 184, 10.1016/j.apcatb.2014.01.016

Görke, 2005, Highly selective methanation by the use of a microchannel reactor, Catal. Today, 110, 132, 10.1016/j.cattod.2005.09.009

Liu, 2012, Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor, Fuel, 95, 599, 10.1016/j.fuel.2011.12.045

Brooks, 2007, Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors, Chem. Eng. Sci., 62, 1161, 10.1016/j.ces.2006.11.020

Borgschulte, 2013, Sorption enhanced CO2 methanation, Phys. Chem. Chem. Phys. PCCP, 15, 9620, 10.1039/c3cp51408k

Walspurger, 2014, Sorption enhanced methanation for substitute natural gas production: experimental results and thermodynamic considerations, Chem. Eng. J., 242, 379, 10.1016/j.cej.2013.12.045

Montanuniversität Leoben: Reaktorkaskade. URL http://vtiu.unileoben.ac.at/de/labor-versuchseinrichtungen-reaktorkaskade/(accessed 10.06.15).

Liu, 2013, Comparative study of fluidized-bed and fixed-bed reactor for syngas methanation over Ni-W/TiO2-SiO2 catalyst, J. Energy Chem., 22, 740, 10.1016/S2095-4956(13)60098-4

Zhang, 2013, Kinetic investigation of carbon monoxide hydrogenation under realistic conditions of methanation of biomass derived syngas, Fuel, 111, 845, 10.1016/j.fuel.2013.04.057

Liu, 2014, performance characteristics of fluidized bed syngas methanation over Ni–Mg/Al2O3 Catalyst, Chin. J. Chem. Eng., 23, 86, 10.1016/j.cjche.2014.09.038

Gaya: The GAYA Project. URL http://www.projetgaya.com/en/ (accessed 28.07.15).

Bajohr, 2014, Kopplung der PtG-Technologie mit thermochemischer Biomassevergasung: Das KIC-Projekt „DemoSNG“, gwf – Gas|Erdgas, 155, 470

Baumhakl, 2014

O. Keich: SNG-Versuchsanlage. URL http://www.cutec.de/index.php/de/2014-07-09-07-15-18/453-sng-versuchsanlage.html accessed 10.06.15).

S. Fendt: SNG-VERSUCHSANLAGE. URL http://www.es.mw.tum.de/index.php?id=285 (accessed 10.06.15).

Graça, 2014, CO2 hydrogenation into CH4 on NiHNaUSY zeolites, Appl. Catal. B Environ., 147, 101, 10.1016/j.apcatb.2013.08.010

Habazaki, 1993

ECN: Methanation. URL http://www.biosng.com/experimental-line-up/methanation/ (accessed 10.06.15).

M. Friedl: Press Release 15 Dezember 2014-HSR produziert Treibstoff aus Sonne, Wasser und CO2-Emissionen. URL http://www.hsr.ch/uploads/tx_icsmedienmitteilungen/IET_startet_Power_to_Gas_Anlage_an_der_HSR.pdf (accessed 10.06.15).

Lebarbier, 2014, Sorption-enhanced synthetic natural gas (SNG) production from syngas: a novel process combining CO methanation, water-gas shift, and CO2 capture, Appl. Catal. B Environ., 144, 223, 10.1016/j.apcatb.2013.06.034

Mutz, 2015, Methanation of CO2: structural response of a Ni-based catalyst under fluctuating reaction conditions unraveled by operando spectroscopy, J. Catal., 327, 48, 10.1016/j.jcat.2015.04.006

Rönsch, 2014, Dynamische Simulation von Reaktoren zur Festbettmethanisierung, Chem. Ing. Tech., 86, 1198, 10.1002/cite.201300046

Pavlostathis, 1991, Kinetics of anaerobic treatment: a critical review, Crit. Rev. Environ. Control, 21, 411, 10.1080/10643389109388424

Batstone, 2002, The IWA anaerobic digestion model No 1 (ADM 1), Water Sci. Technol., 45, 65, 10.2166/wst.2002.0292

Söhngen, 1906

Thauer, 2008, Methanogenic archaea: ecologically relevant differences in energy conservation, Nat. Rev. Micro, 6, 579, 10.1038/nrmicro1931

Wilhelm, 1977, Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 10.1021/cr60306a003

Peillex, 1988, Growth of Methanococcus thermolithotrophicus in batch and continuous culture on H2 and CO2: influence of agitation, Appl. Microbiol. Biotechnol., 29, 560, 10.1007/BF00260985

Nishimura, 1992, Cultivation of thermophilic methanogen KN-15 on H2-CO2 under pressurized conditions, J. Ferment. Bioeng., 73, 477, 10.1016/0922-338X(92)90141-G

Martin, 2013, A single-culture bioprocess of methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H2, Archaea, 2013, 11, 10.1155/2013/157529

Luo, 2012, Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture, Biotechnol. Bioeng., 109, 2729, 10.1002/bit.24557

Seifert, 2014, Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis, Appl. Energy, 132, 155, 10.1016/j.apenergy.2014.07.002

Burkhardt, 2014, Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system, Bioresour. Technol., 178, 330, 10.1016/j.biortech.2014.08.023

Jee, 1988, Continuous CH4 Production from H2 and CO2 by Methanobacterium thermoautotrophicum in a fixed-bed reactor, J. Ferment. Technol., 66, 235, 10.1016/0385-6380(88)90054-4

Burkhardt, 2013, Methanation of hydrogen and carbon dioxide, Appl. Energy, 111, 74, 10.1016/j.apenergy.2013.04.080

Graf, 2014

Bensmann, 2014, Biological methanation of hydrogen within biogas plants: a model-based feasibility study, Appl. Energy, 134, 413, 10.1016/j.apenergy.2014.08.047

Luo, 2012, Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor, Biotechnol. Bioeng., 109, 1088, 10.1002/bit.24360

Tada, 2012, Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures, Int. J. Hydrogen Energy, 37, 5527, 10.1016/j.ijhydene.2011.12.122

Köppel, 2009, biogas upgrading for injection into the gas grid quality aspects, technological and ecological consideration, gwf-Gas Erdgas, 150, 26

Götz, 2011, Optimierungspotenzial von Wäschen zur Biogasaufbereitung. Teil 1-Physikalische Wäschen, Chem. Ing. Tech., 83, 858, 10.1002/cite.201000211

Seifert, 2013, Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis, Bioresour. Technol., 136, 747, 10.1016/j.biortech.2013.03.119

Bartholomew, 1982, Sulfur Poisoning of Metals, Adv. Catal., 31, 135, 10.1016/S0360-0564(08)60454-X

Bartholomew, 1982, Carbon deposition in steam reforming and methanation, Catal. Rev., 24, 67, 10.1080/03602458208079650

González, 2015, Fischer-tropsch synthesis with H2/CO2 – catalyst behavior under transient conditions, Chem. Ing. Tech., 87, 848, 10.1002/cite.201400137

Eilers, 2015, Fischer-Tropsch-Synthese unter instationären Bedingungen im Suspensionsreaktor: experimentelle und rechnerische Studien, Chem. Ing. Tech., 87, 837, 10.1002/cite.201400138

Specht, 2014, Power to Gas – zwischen Mythos und Wahrheit - Teil 2-P2G® in der Praxis: Erfahrungen und Ergebnisse

Aicher, 2014, Arbeitspaket 5: Betrachtungen des Gesamtsystems im Hinblick auf Dynamik und Prozessintegration, energie|wasser-praxis, 65, 51

Napp, 2014, A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries, Renew. Sustain. Energy Rev., 30, 616, 10.1016/j.rser.2013.10.036

Markewitz, 2015, Carbon capture technologies, 13

Nataly Echevarria Huaman, 2014, Energy related CO2 emissions and the progress on CCS projects: a review, Renew. Sustain. Energy Rev., 31, 368, 10.1016/j.rser.2013.12.002

Trost, 2012, Erneuerbares Methan: analyse der CO2-Potenziale für Power-to-Gas Anlagen in Deutschland, Z Energiewirtsch, 36, 173, 10.1007/s12398-012-0080-6

Graf, 2013

Wonneberger, 2013, Kapitel 14: innovative Biogasprozesse

Götz, 2012, Optimierungspotenzial von Wäschen zur Biogasaufbereitung. Teil 2 Chemische Wäschen, Chem. Ing. Tech., 84, 81, 10.1002/cite.201100129

Jürgensen, 2014, Utilization of surplus electricity from wind power for dynamic biogas upgrading: Northern Germany case study, Biomass Bioenergy, 66, 126, 10.1016/j.biombioe.2014.02.032

Schneider, 2015, The geographic potential of Power-to-Gas in a German model region – Trier-Amprion 5, J. Energy Storage, 1, 1, 10.1016/j.est.2015.03.001

European Biofuels Technology Platform (EBTP): Biogas/Biomethane for use as a transport fuel. URL http://www.biofuelstp.eu/biogas.html#intro (accessed 10.06.15).

Song, 2014, Comparison of biogas development from households and medium and large-scale biogas plants in rural China, Renew. Sustain. Energy Rev., 33, 204, 10.1016/j.rser.2014.01.084

Chen, 2014, Status and prospects of rural biogas development in China, Renew. Sustain. Energy Rev., 39, 679, 10.1016/j.rser.2014.07.119

Li, 2015, The development and countermeasures of household biogas in northwest grain for green project areas of China, Renew. Sustain. Energy Rev., 44, 835, 10.1016/j.rser.2015.01.027

American Biogas Council: Operational Biogas Systems in the U.S. URL http://www.americanbiogascouncil.org/biogas_maps.asp (accessed 10.06.15).

Gassner, 2008, Thermo-economic optimisation of the integration of electrolysis in synthetic natural gas production from wood, Energy, 33, 189, 10.1016/j.energy.2007.09.010

Bajohr, 2013, Bewertung der Kopplung von PtG-Konzepten mit einer Biomassevergasung, gwf-Gas Erdgas, 154, 222

de Coninck, 2010

Kheshgi, 2005, Sequestration of fermentation CO2 from ethanol production, Energy, 30, 1865, 10.1016/j.energy.2004.11.004

2003

Schöß, 2014, Chemische Speicherung regenerativer elektrischer Energie durch Methanisierung von Prozessgasen aus der Stahlindustrie, Chem. Ing. Tech., 86, 734, 10.1002/cite.201300086

Buchholz, 2014, Power-to-Gas: storing surplus electrical energy. a design study, Energy Procedia, 63, 7993, 10.1016/j.egypro.2014.11.836

Lehner, 2014

Kato, 2005, Effective utilization of by-product oxygen from electrolysis hydrogen production, Energy, 30, 2580, 10.1016/j.energy.2004.07.004

Varone, 2015, Power to liquid and power to gas: an option for the German Energiewende, Renew. Sustain. Energy Rev., 45, 207, 10.1016/j.rser.2015.01.049

Schill, 2014, Residual load, renewable surplus generation and storage requirements in Germany, Energy Policy, 73, 65, 10.1016/j.enpol.2014.05.032

Ueckerdt, 2013

Budny, 2014, Economic feasibility of pipe storage and underground reservoir storage options for power-to-gas load balancing, Energy Procedia, 61, 2201, 10.1016/j.egypro.2014.12.109

Vandewalle, 2015, Effects of large-scale power to gas conversion on the power, gas and carbon sectors and their interactions, Energy Convers. Manag., 94, 28, 10.1016/j.enconman.2015.01.038

Gassner, 2009, Thermo-economic process model for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass, Biomass Bioenergy, 33, 1587, 10.1016/j.biombioe.2009.08.004

Ausfelder, 2015, Energiespeicherung als element einer sicheren energieversorgung, Chem. Ing. Tech., 87, 17, 10.1002/cite.201400183

Connolly, 2014, A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system, Energy, 73, 110, 10.1016/j.energy.2014.05.104

Brunner, 2014, Arbeitspaket 6: Gasnetzanalysen und Wirtschaftlichkeitsbetrachtung, Energ. | wasser-praxis, 65, 56

Baumann, 2014, Nutzen von Smart-Grid-Konzepten unter Berücksichtigung der Power-to-Gas-Technologie, Energ. | wasser-praxis, 65

Rieke, 2013, Erste industrielle Power-to-Gas-Anlage mit 6 Megawatt, gwf-Gas|Erdgas, 154, 660

Kurt, 2014, Das e-gas-Projekt am Biogasanlagenstandort in Werlte, gwf-Gas|Erdgas, 155, 304

P2G-BioCat: BioCatProject. URL http://biocat-project.com/(accessed 10.06.15).