Renewable Power-to-Gas: A technological and economic review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zervos, 2011
World Wind Energy Association (WWEA): WWEC2014: Key Statistics of World Wind Energy Report published. URL http://www.wwindea.org/wwec2014-key-statistics-of-world-wind-energy-report-published/.(accessed 10.06.15).
Global Wind Energy Council (GWEC), 2014
Wallbrecht, 2006
Observ'ER, 2013
Jentsch, 2014, Optimal use of Power-to-Gas energy storage systems in an 85% renewable energy scenario, Energy Procedia, 46, 254, 10.1016/j.egypro.2014.01.180
Hashimoto, 1999, Global CO2 recycling—novel materials and prospect for prevention of global warming and abundant energy supply, Mater. Sci. Eng. A, 267, 200, 10.1016/S0921-5093(99)00092-1
Hashimoto, 2014, The production of renewable energy in the form of methane using electrolytic hydrogen generation, Energ. Sustain. Soc., 4, 1, 10.1186/s13705-014-0017-5
Pleßmann, 2014, Global Energy Storage Demand for a 100% Renewable Electricity Supply, Energy Procedia, 46, 22, 10.1016/j.egypro.2014.01.154
de Boer, 2014, The application of Power-to-Gas, pumped hydro storage and compressed air energy storage in an electricity system at different wind power penetration levels, Energy, 72, 360, 10.1016/j.energy.2014.05.047
Newton, 2014, Power-to-Gas and Methanation – pathways to a 'Hydrogen Economy'
Sterner, 2010, Bioenergy and Renewable Power Methane in Integrated 100% Renewable Energy Systems: Limiting Global Warming by Transforming Energy Systems, 14
Specht, 2010, storage of renewable energy in the natural gas grid, Erdöl Erdgas Kohle, 126, 342
Hoekman, 2010, CO2 recycling by reaction with renewably-generated hydrogen, Int. J. Greenh. Gas Control, 4, 44, 10.1016/j.ijggc.2009.09.012
Graf, 2011, Injection of biogas, SNG and hydrogen into the gas grid, gwf-Gas Erdgas, 2, 30
Götz, 2011, Speicherung von regenerativ erzeugter elektrischer Energie in der Erdgasinfrastruktur, gwf-Gas Erdgas, 152, 200
Götz, 2011
Budzianowski, 2012, Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs, Renew. Sustain. Energy Rev., 16, 6507, 10.1016/j.rser.2012.08.016
Centi, 2014, Perspectives and state of the art in producing solar fuels and chemicals from CO2, 1
Iglesias G, 2015, Chemical energy storage in gaseous hydrocarbons via iron Fischer–Tropsch synthesis from H2/CO2—Kinetics, selectivity and process considerations, Catal. Today, 242, 184, 10.1016/j.cattod.2014.05.020
Schaub, 2013, chemical storage of renewable electricity via hydrogen – principles and hydrocarbon fuels as an example, 619
Habisreutinger, 2013, Photocatalytic reduction of CO2 on TiO2 and other semiconductors, Angew. Chem. Int. Ed., 52, 7372, 10.1002/anie.201207199
Kreuter, 1998, Electrolysis: the important energy transformer in a world of sustainable energy, Int. J. Hydrogen Energy, 23, 661, 10.1016/S0360-3199(97)00109-2
Smolinka, 2011
Bhandari, 2014, Life cycle assessment of hydrogen production via electrolysis – a review, J. Clean. Prod., 85, 151, 10.1016/j.jclepro.2013.07.048
Gahleitner, 2013, Hydrogen from renewable electricity: an international review of Power-to-Gas pilot plants for stationary applications, Int. J. Hydrogen Energy, 38, 2039, 10.1016/j.ijhydene.2012.12.010
Ulleberg, 2010, The wind/hydrogen demonstration system at Utsira in Norway: evaluation of system performance using operational data and updated hydrogen energy system modeling tools, Int. J. Hydrogen Energy, 35, 1841, 10.1016/j.ijhydene.2009.10.077
Graf, 2014
Ursua, 2012, hydrogen production from water electrolysis: current status and future trends, Proc. IEEE, 100, 410, 10.1109/JPROC.2011.2156750
Carmo, 2013, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy, 38, 4901, 10.1016/j.ijhydene.2013.01.151
Hacker, 2015, Arbeitspaket 1b: systemoptimierung und Betriebsführung der PEM-Elektrolyse, energie|wasser-praxis, 65, 37
Gazey, 2006, A field application experience of integrating hydrogen technology with wind power in a remote island location, J. Power Sources, 157, 841, 10.1016/j.jpowsour.2005.11.084
Müller-Syring, 2013
Sterner, 2014
Siemens: “Grüner” Wasserstoff. URL http://www.industry.siemens.com/topics/global/de/magazine/process-news/antriebstechnik/seiten/pem-elektrolyse.aspx.(accessed 10.06.15).
Proton Onsite: M1, M2. URL http://protononsite.com/products/m/#tab-overview.(accessed 10.06.15).
Reytier, 2014
Brisse, 2008, High temperature water electrolysis in solid oxide cells, Int. J. Hydrogen Energy, 33, 5375, 10.1016/j.ijhydene.2008.07.120
Laguna-Bercero, 2012, Recent advances in high temperature electrolysis using solid oxide fuel cells: a review, J. Power Sources, 203, 4, 10.1016/j.jpowsour.2011.12.019
Pozzo, 2015, Enhanced biomass-to-liquid (BTL) conversion process through high temperature co-electrolysis in a solid oxide electrolysis cell (SOEC), Fuel, 145, 39, 10.1016/j.fuel.2014.12.066
M. Landgraf: Press Release – Power to Gas: Storing the Wind and Sun in Natural Gas. URL http://www.helmeth.eu/images/joomlaplates/documents/KIT_PI_2014_044_engl_Power_to_Gas_Storing_the_Wind_and_Sun_in_Natural_Gas.pdf (accessed 10.06.15).
De Saint Jean, 2014, Parametric study of an efficient renewable power-to-substitute-natural-gas process including high-temperature steam electrolysis, Int. J. Hydrogen Energy, 39, 17024, 10.1016/j.ijhydene.2014.08.091
Anghilante, 2014
Giglio, 2015, Synthetic natural gas via integrated high-temperature electrolysis and methanation: part I—Energy performance, J. Energy Storage, 1, 22, 10.1016/j.est.2015.04.002
Buttler, 2015, A detailed techno-economic analysis of heat integration in high temperature electrolysis for efficient hydrogen production, Int. J. Hydrogen Energy, 40, 38, 10.1016/j.ijhydene.2014.10.048
Zakeri, 2015, Electrical energy storage systems: a comparative life cycle cost analysis, Renew. Sustain. Energy Rev., 42, 569, 10.1016/j.rser.2014.10.011
Bodner, 2014, H2 generation from alkaline electrolyzer, Wiley Interdiscip. Rev. Energy Environ., 4, 365
Doenitz, 1980, Hydrogen production by high temperature electrolysis of water vapour, Int. J. Hydrogen Energy, 5, 55, 10.1016/0360-3199(80)90114-7
E&E Consultant, 2014
Roes, 2011, Ex-ante environmental assessments of novel technologies – Improved caprolactam catalysis and hydrogen storage, J. Clean. Prod., 19, 1659, 10.1016/j.jclepro.2011.05.010
Schoenung, 2011, Economic analysis of large-scale hydrogen storage for renewable utility applications, 8
Cerbe, 2008
Fujita, 1997, Difference in the selectivity of CO and CO2 methanation reactions, Chem. Eng. J., 68, 63, 10.1016/S1385-8947(97)00074-0
Weatherbee, 1982, Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel, J. Catal., 77, 460, 10.1016/0021-9517(82)90186-5
Müller, 2013, Sabatier-based CO2-methanation by catalytic conversion, Environ. Earth Sci., 1
Inui, 1979, Methanation of CO2 and CO on supported nickel-based composite catalysts, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 75, 787
Götz, 2014
Lefebvre, 2015, Improvement of three-phase methanation reactor performance for steady-state and transient operation, Fuel Process. Technol., 132, 83, 10.1016/j.fuproc.2014.10.040
Sabatier, 1902, 514
Chiang, 1983, Kinetics of the hydrogenation of carbon dioxide over supported nickel, Industrial Eng. Chem. Prod. Res. Dev., 22, 225, 10.1021/i300010a011
Kaltenmaier, 1988
Fujita, 1991, Mechanisms of methanation of carbon monoxide and carbon dioxide over nickel, Industrial Eng. Chem. Res., 30, 1146, 10.1021/ie00054a012
Kopyscinski, 2010, Production of synthetic natural gas (SNG) from coal and dry biomass – A technology review from 1950 to 2009, Fuel, 89, 1763, 10.1016/j.fuel.2010.01.027
Vannice, 1977, Catalytic synthesis of hydrocarbons from carbon monoxide and hydrogen, 15
Barbarossa, 2011, Methanation of carbon dioxide
Bartholomew, 2001, Mechanisms of catalyst deactivation, Appl. Catal. A General, 212, 17, 10.1016/S0926-860X(00)00843-7
Schaaf, 2014, Methanation of CO2 – storage of renewable energy in a gas distribution system, Energ Sustain Soc., 4, 10.1186/s13705-014-0029-1
Schaaf, 2014, Speicherung von elektrischer Energie im Erdgasnetz – Methanisierung von CO2-haltigen Gasen, Chem. Ing. Tech., 86, 476, 10.1002/cite.201300144
Kiendl, 2014, Dilute gas methanation of synthesis gas from biomass gasification, Fuel, 123, 211, 10.1016/j.fuel.2014.01.036
Patent DE102011121930 A1. (2013). M. Buxbaum.
Seemann, 2010, Fluidized bed methanation of wood-derived producer gas for the production of synthetic natural gas, Industrial Eng. Chem. Res., 49, 7034, 10.1021/ie100510m
Kopyscinski, 2011, Methanation in a fluidized bed reactor with high initial CO partial pressure: part I—Experimental investigation of hydrodynamics, mass transfer effects, and carbon deposition, Chem. Eng. Sci., 66, 924, 10.1016/j.ces.2010.11.042
Rönsch, 2011, Methanisierung von Synthesegasen – Grundlagen und Verfahrensentwicklungen, Chem. Ing. Tech., 83, 1200, 10.1002/cite.201100013
Götz, 2013, Einsatz eines Blasensäulenreaktors zur Methansynthese, Chem. Ing. Tech., 85, 1, 10.1002/cite.201200212
Götz, 2013, Evaluation of organic and ionic liquids for three-phase methanation and biogas purification processes, Energy & Fuels, 27, 4705, 10.1021/ef400334p
Zhang, 2014, Low-temperature methanation of syngas in slurry phase over Zr-doped Ni/γ-Al2O3 catalysts prepared using different methods, Fuel, 132, 211, 10.1016/j.fuel.2014.04.085
Meng, 2015, Effect of promoter Ce on the structure and catalytic performance of Ni/Al2O3 catalyst for CO methanation in slurry-bed reactor, J. Nat. Gas Sci. Eng., 23, 250, 10.1016/j.jngse.2015.01.041
Götz, 2015, Long-term thermal stability of selected ionic liquids in nitrogen and hydrogen atmosphere, Thermochim. Acta, 600, 82, 10.1016/j.tca.2014.11.005
Janke, 2014, Catalytic and adsorption studies for the hydrogenation of CO2 to methane, Appl. Catal. B Environ., 152–153, 184, 10.1016/j.apcatb.2014.01.016
Görke, 2005, Highly selective methanation by the use of a microchannel reactor, Catal. Today, 110, 132, 10.1016/j.cattod.2005.09.009
Liu, 2012, Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor, Fuel, 95, 599, 10.1016/j.fuel.2011.12.045
Brooks, 2007, Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors, Chem. Eng. Sci., 62, 1161, 10.1016/j.ces.2006.11.020
Borgschulte, 2013, Sorption enhanced CO2 methanation, Phys. Chem. Chem. Phys. PCCP, 15, 9620, 10.1039/c3cp51408k
Walspurger, 2014, Sorption enhanced methanation for substitute natural gas production: experimental results and thermodynamic considerations, Chem. Eng. J., 242, 379, 10.1016/j.cej.2013.12.045
Montanuniversität Leoben: Reaktorkaskade. URL http://vtiu.unileoben.ac.at/de/labor-versuchseinrichtungen-reaktorkaskade/(accessed 10.06.15).
Liu, 2013, Comparative study of fluidized-bed and fixed-bed reactor for syngas methanation over Ni-W/TiO2-SiO2 catalyst, J. Energy Chem., 22, 740, 10.1016/S2095-4956(13)60098-4
Zhang, 2013, Kinetic investigation of carbon monoxide hydrogenation under realistic conditions of methanation of biomass derived syngas, Fuel, 111, 845, 10.1016/j.fuel.2013.04.057
Liu, 2014, performance characteristics of fluidized bed syngas methanation over Ni–Mg/Al2O3 Catalyst, Chin. J. Chem. Eng., 23, 86, 10.1016/j.cjche.2014.09.038
Gaya: The GAYA Project. URL http://www.projetgaya.com/en/ (accessed 28.07.15).
Bajohr, 2014, Kopplung der PtG-Technologie mit thermochemischer Biomassevergasung: Das KIC-Projekt „DemoSNG“, gwf – Gas|Erdgas, 155, 470
Baumhakl, 2014
O. Keich: SNG-Versuchsanlage. URL http://www.cutec.de/index.php/de/2014-07-09-07-15-18/453-sng-versuchsanlage.html accessed 10.06.15).
S. Fendt: SNG-VERSUCHSANLAGE. URL http://www.es.mw.tum.de/index.php?id=285 (accessed 10.06.15).
Graça, 2014, CO2 hydrogenation into CH4 on NiHNaUSY zeolites, Appl. Catal. B Environ., 147, 101, 10.1016/j.apcatb.2013.08.010
Habazaki, 1993
ECN: Methanation. URL http://www.biosng.com/experimental-line-up/methanation/ (accessed 10.06.15).
M. Friedl: Press Release 15 Dezember 2014-HSR produziert Treibstoff aus Sonne, Wasser und CO2-Emissionen. URL http://www.hsr.ch/uploads/tx_icsmedienmitteilungen/IET_startet_Power_to_Gas_Anlage_an_der_HSR.pdf (accessed 10.06.15).
Lebarbier, 2014, Sorption-enhanced synthetic natural gas (SNG) production from syngas: a novel process combining CO methanation, water-gas shift, and CO2 capture, Appl. Catal. B Environ., 144, 223, 10.1016/j.apcatb.2013.06.034
Mutz, 2015, Methanation of CO2: structural response of a Ni-based catalyst under fluctuating reaction conditions unraveled by operando spectroscopy, J. Catal., 327, 48, 10.1016/j.jcat.2015.04.006
Rönsch, 2014, Dynamische Simulation von Reaktoren zur Festbettmethanisierung, Chem. Ing. Tech., 86, 1198, 10.1002/cite.201300046
Pavlostathis, 1991, Kinetics of anaerobic treatment: a critical review, Crit. Rev. Environ. Control, 21, 411, 10.1080/10643389109388424
Batstone, 2002, The IWA anaerobic digestion model No 1 (ADM 1), Water Sci. Technol., 45, 65, 10.2166/wst.2002.0292
Söhngen, 1906
Thauer, 2008, Methanogenic archaea: ecologically relevant differences in energy conservation, Nat. Rev. Micro, 6, 579, 10.1038/nrmicro1931
Wilhelm, 1977, Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 10.1021/cr60306a003
Peillex, 1988, Growth of Methanococcus thermolithotrophicus in batch and continuous culture on H2 and CO2: influence of agitation, Appl. Microbiol. Biotechnol., 29, 560, 10.1007/BF00260985
Nishimura, 1992, Cultivation of thermophilic methanogen KN-15 on H2-CO2 under pressurized conditions, J. Ferment. Bioeng., 73, 477, 10.1016/0922-338X(92)90141-G
Martin, 2013, A single-culture bioprocess of methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H2, Archaea, 2013, 11, 10.1155/2013/157529
Luo, 2012, Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture, Biotechnol. Bioeng., 109, 2729, 10.1002/bit.24557
Seifert, 2014, Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis, Appl. Energy, 132, 155, 10.1016/j.apenergy.2014.07.002
Burkhardt, 2014, Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system, Bioresour. Technol., 178, 330, 10.1016/j.biortech.2014.08.023
Jee, 1988, Continuous CH4 Production from H2 and CO2 by Methanobacterium thermoautotrophicum in a fixed-bed reactor, J. Ferment. Technol., 66, 235, 10.1016/0385-6380(88)90054-4
Burkhardt, 2013, Methanation of hydrogen and carbon dioxide, Appl. Energy, 111, 74, 10.1016/j.apenergy.2013.04.080
Graf, 2014
Bensmann, 2014, Biological methanation of hydrogen within biogas plants: a model-based feasibility study, Appl. Energy, 134, 413, 10.1016/j.apenergy.2014.08.047
Luo, 2012, Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor, Biotechnol. Bioeng., 109, 1088, 10.1002/bit.24360
Tada, 2012, Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures, Int. J. Hydrogen Energy, 37, 5527, 10.1016/j.ijhydene.2011.12.122
Köppel, 2009, biogas upgrading for injection into the gas grid quality aspects, technological and ecological consideration, gwf-Gas Erdgas, 150, 26
Götz, 2011, Optimierungspotenzial von Wäschen zur Biogasaufbereitung. Teil 1-Physikalische Wäschen, Chem. Ing. Tech., 83, 858, 10.1002/cite.201000211
Seifert, 2013, Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis, Bioresour. Technol., 136, 747, 10.1016/j.biortech.2013.03.119
Bartholomew, 1982, Carbon deposition in steam reforming and methanation, Catal. Rev., 24, 67, 10.1080/03602458208079650
González, 2015, Fischer-tropsch synthesis with H2/CO2 – catalyst behavior under transient conditions, Chem. Ing. Tech., 87, 848, 10.1002/cite.201400137
Eilers, 2015, Fischer-Tropsch-Synthese unter instationären Bedingungen im Suspensionsreaktor: experimentelle und rechnerische Studien, Chem. Ing. Tech., 87, 837, 10.1002/cite.201400138
Specht, 2014, Power to Gas – zwischen Mythos und Wahrheit - Teil 2-P2G® in der Praxis: Erfahrungen und Ergebnisse
Aicher, 2014, Arbeitspaket 5: Betrachtungen des Gesamtsystems im Hinblick auf Dynamik und Prozessintegration, energie|wasser-praxis, 65, 51
Napp, 2014, A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries, Renew. Sustain. Energy Rev., 30, 616, 10.1016/j.rser.2013.10.036
Markewitz, 2015, Carbon capture technologies, 13
Nataly Echevarria Huaman, 2014, Energy related CO2 emissions and the progress on CCS projects: a review, Renew. Sustain. Energy Rev., 31, 368, 10.1016/j.rser.2013.12.002
Trost, 2012, Erneuerbares Methan: analyse der CO2-Potenziale für Power-to-Gas Anlagen in Deutschland, Z Energiewirtsch, 36, 173, 10.1007/s12398-012-0080-6
Graf, 2013
Wonneberger, 2013, Kapitel 14: innovative Biogasprozesse
Götz, 2012, Optimierungspotenzial von Wäschen zur Biogasaufbereitung. Teil 2 Chemische Wäschen, Chem. Ing. Tech., 84, 81, 10.1002/cite.201100129
Jürgensen, 2014, Utilization of surplus electricity from wind power for dynamic biogas upgrading: Northern Germany case study, Biomass Bioenergy, 66, 126, 10.1016/j.biombioe.2014.02.032
Schneider, 2015, The geographic potential of Power-to-Gas in a German model region – Trier-Amprion 5, J. Energy Storage, 1, 1, 10.1016/j.est.2015.03.001
European Biofuels Technology Platform (EBTP): Biogas/Biomethane for use as a transport fuel. URL http://www.biofuelstp.eu/biogas.html#intro (accessed 10.06.15).
Song, 2014, Comparison of biogas development from households and medium and large-scale biogas plants in rural China, Renew. Sustain. Energy Rev., 33, 204, 10.1016/j.rser.2014.01.084
Chen, 2014, Status and prospects of rural biogas development in China, Renew. Sustain. Energy Rev., 39, 679, 10.1016/j.rser.2014.07.119
Li, 2015, The development and countermeasures of household biogas in northwest grain for green project areas of China, Renew. Sustain. Energy Rev., 44, 835, 10.1016/j.rser.2015.01.027
American Biogas Council: Operational Biogas Systems in the U.S. URL http://www.americanbiogascouncil.org/biogas_maps.asp (accessed 10.06.15).
Gassner, 2008, Thermo-economic optimisation of the integration of electrolysis in synthetic natural gas production from wood, Energy, 33, 189, 10.1016/j.energy.2007.09.010
Bajohr, 2013, Bewertung der Kopplung von PtG-Konzepten mit einer Biomassevergasung, gwf-Gas Erdgas, 154, 222
de Coninck, 2010
Kheshgi, 2005, Sequestration of fermentation CO2 from ethanol production, Energy, 30, 1865, 10.1016/j.energy.2004.11.004
2003
Schöß, 2014, Chemische Speicherung regenerativer elektrischer Energie durch Methanisierung von Prozessgasen aus der Stahlindustrie, Chem. Ing. Tech., 86, 734, 10.1002/cite.201300086
Buchholz, 2014, Power-to-Gas: storing surplus electrical energy. a design study, Energy Procedia, 63, 7993, 10.1016/j.egypro.2014.11.836
Lehner, 2014
Kato, 2005, Effective utilization of by-product oxygen from electrolysis hydrogen production, Energy, 30, 2580, 10.1016/j.energy.2004.07.004
Varone, 2015, Power to liquid and power to gas: an option for the German Energiewende, Renew. Sustain. Energy Rev., 45, 207, 10.1016/j.rser.2015.01.049
Schill, 2014, Residual load, renewable surplus generation and storage requirements in Germany, Energy Policy, 73, 65, 10.1016/j.enpol.2014.05.032
Ueckerdt, 2013
Budny, 2014, Economic feasibility of pipe storage and underground reservoir storage options for power-to-gas load balancing, Energy Procedia, 61, 2201, 10.1016/j.egypro.2014.12.109
Vandewalle, 2015, Effects of large-scale power to gas conversion on the power, gas and carbon sectors and their interactions, Energy Convers. Manag., 94, 28, 10.1016/j.enconman.2015.01.038
Gassner, 2009, Thermo-economic process model for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass, Biomass Bioenergy, 33, 1587, 10.1016/j.biombioe.2009.08.004
Ausfelder, 2015, Energiespeicherung als element einer sicheren energieversorgung, Chem. Ing. Tech., 87, 17, 10.1002/cite.201400183
Connolly, 2014, A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system, Energy, 73, 110, 10.1016/j.energy.2014.05.104
Brunner, 2014, Arbeitspaket 6: Gasnetzanalysen und Wirtschaftlichkeitsbetrachtung, Energ. | wasser-praxis, 65, 56
Baumann, 2014, Nutzen von Smart-Grid-Konzepten unter Berücksichtigung der Power-to-Gas-Technologie, Energ. | wasser-praxis, 65
Rieke, 2013, Erste industrielle Power-to-Gas-Anlage mit 6 Megawatt, gwf-Gas|Erdgas, 154, 660
Kurt, 2014, Das e-gas-Projekt am Biogasanlagenstandort in Werlte, gwf-Gas|Erdgas, 155, 304
P2G-BioCat: BioCatProject. URL http://biocat-project.com/(accessed 10.06.15).