Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Loại bỏ chất ô nhiễm trong nước bằng cách sử dụng các hydrogel composites được tạo thành từ collagen, goma guar và các khung hữu cơ kim loại
Tóm tắt
Hydrogel là những vật liệu có tiềm năng cao trong việc xử lý nước thải. Chúng có khả năng loại bỏ nhiều loại chất ô nhiễm trong nước và dễ dàng được loại bỏ sau khi xử lý. Hiện nay, có một sự quan tâm ngày càng tăng trong việc phát triển các hydrogel có nguồn gốc sinh học nhằm giảm thiểu việc sử dụng polymer tổng hợp. Trong nghiên cứu này, chúng tôi đã chuẩn bị các hydrogel có nguồn gốc sinh học từ collagen và goma guar (ColGG) để loại bỏ phẩm nhuộm vải và các ion kim loại. Các hydrogel composite được thiết kế với sự kết hợp 1 wt% của MgMOF74, CaMOF74 và Zn(Atz)(Py) trong ma trận sinh học polymer. Các hydrogel chứa MgMOF74 và CaMOF74 đã làm tăng mô-đun lưu trữ của ma trận lần lượt là 324,4 ± 30% và 116,84 ± 10%. Hơn nữa, các MOF đã giảm sự phân hủy nhiệt và tăng khả năng hấp thụ nước của ColGG. Các MOF cũng cải thiện hiệu suất hấp thụ trong việc loại bỏ các phẩm màu nâu mordant và đỏ trực tiếp từ nước thải. Sự cải thiện hiệu suất hấp thụ khi thêm các MOF trở nên rõ rệt hơn trong việc loại bỏ các ion Cu2+ và Zn2+. Tính kiềm của các liên kết hữu cơ đóng vai trò quan trọng trong việc nâng cao hiệu suất hấp thụ và các tính chất vật lý. Đáng chú ý, các hydrogel đã trung hòa pH của nước thải trong quá trình hấp thụ.
Từ khóa
#hydrogel #xử lý nước thải #collagen #goma guar #khung hữu cơ kim loại #loại bỏ ion kim loại #phẩm nhuộm vảiTài liệu tham khảo
Reyes Ruiz ID, Castañeda Calzoncit CE, Claudio Rizo JA, Flores Guía TE, Cabrera Munguía DA, Cano Salazar LF, Becerra Rodríguez JJ (2020) Evaluation of Collagen-Polyurethane-Chitosan Hydrogels for Lead Ions Removal from Water. Mediterr J Basic Appl Sci 04:93–104. https://doi.org/10.46382/mjbas.2020.4209
Claudio-Rizo JA, Burciaga-Montemayor NG, Cano-Salazar LF, Flores Guía TE, Cabrera Munguía DA, Herrera Guerrero A, Soriano Corral F (2020) Novel Collagen-Chitosan Based Hydrogels Reinforced with Manganite as Potential Adsorbents of Pb2 + Ions. J Polym Environ 28:2864–2879. https://doi.org/10.1007/s10924-020-01822-8
Pereira AGB, Rodrigues FHA, Paulino AT, Martins AF, Fajardo AR (2021) Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: A review. J Clean Prod 284:124703. https://doi.org/10.1016/j.jclepro.2020.124703
Blackburn RS (2004) Natural polysaccharides and their interactions with dye molecules: Applications in effluent treatment. Environ Sci Technol 38:4905–4909. https://doi.org/10.1021/es049972n
Mukherjee S, Mukhopadhyay S, Bin Zafri MZ, Zhan X, Hashim MA, Gupta BS (2018) Application of guar gum for the removal of dissolved lead from wastewater. Ind Crops Prod 111:261–269. https://doi.org/10.1016/j.indcrop.2017.10.022
Guo J, Yu Y, Zhu W, Serda RE, Franco S, Wang L, Lei Q, Agola JO, Noureddine A, Ploetz E, Wuttke S, Brinker CJ (2021) Modular Assembly of Red Blood Cell Superstructures from Metal–Organic Framework Nanoparticle-Based Building Blocks. Adv Funct Mater 31:2005935. https://doi.org/10.1002/adfm.202005935
Doonan CJ, Tranchemontagne DJ, Glover TG, Hunt JR, Yaghi OM (2010) Exceptional ammonia uptake by a covalent organic framework. Nat Chem 2:235–238. https://doi.org/10.1038/nchem.548
Xie Y, Wang TT, Liu XH, Zou K, Deng WQ (2013) Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nat Commun 4:1960. https://doi.org/10.1038/ncomms2960
Huang J, Turner SR (2018) Hypercrosslinked Polymers: A Review. Polym Rev 58:1–41. https://doi.org/10.1080/15583724.2017.1344703
Tsyurupa MP, Davankov VA (2002) Hypercrosslinked polymers: Basic principle of preparing the new class of polymeric materials. React Funct Polym 53:193–203. https://doi.org/10.1016/S1381-5148(02)00173-6
Zhang A, Gao H, Li W, Bai H, Wu S, Zeng Y, Cui W, Zhou X, Li L (2016) Hybrid microporous polymers from double-decker-shaped silsesquioxane building blocks via Friedel-Crafts reaction. Polymer 101:388–394. https://doi.org/10.1016/j.polymer.2016.08.088
Mohamed MG, Atayde EC, Matsagar BM, Na J, Yamauchi Y, Wu KCW, Kuo SW (2020) Construction Hierarchically Mesoporous/Microporous Materials Based on Block Copolymer and Covalent Organic Framework. J Taiwan Inst Chem Eng 112:180–192. https://doi.org/10.1016/j.jtice.2020.06.013
Mohamed MG, Tsai MY, Wang CF, Huang CF, Danko F, Dai L, Chen T, Kuo SW (2021) Multifunctional polyhedral oligomeric silsesquioxane (POSS) based hybrid porous materials for CO2 uptake and iodine adsoprtion. Polymers (Basel) 13:221. https://doi.org/10.3390/polym13020221
Mohamed MG, Liu NY, EL-Mahdy AAF, Kuo SW (2021) Ultrastable luminescent hybrid microporous polymers based on polyhedral oligomeric silsesquioxane for CO2 uptake and metal ion sensing. Microporous Mesoporous Mater 311:110695. https://doi.org/10.1016/j.micromeso.2020.110695
Mohamed MG, El-Mahdy AFM, Meng TS, Samy MM, Kuo SW (2020) Multifunctional hypercrosslinked porous organic polymers based on tetraphenylethene and triphenylamine derivatives for high-performance dye adsorption and supercapacitor. Polymers (Basel) 12:2426. https://doi.org/10.3390/polym12102426
Liu YC, Yeh LH, Zheng MJ, Wu KCW (2021) Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Sci Adv 7:eabe9924. https://doi.org/10.1126/sciadv.abe9924
Vinu M, Senthil Raja D, Jiang YC, Liu TY, Xie YY, Lin YF, Ynag CC, Lin CH, Alshehri SM, Ahamad T, Salunkhe RR, Yamauchi Y, Deng YH, Wu KCW (2018) Effects of structural crystallinity and defects in microporous Al-MOF filled chitosan mixed matrix membranes for pervaporation of water/ethanol mixtures. J Taiwan Inst Chem Eng 83:143–151. https://doi.org/10.1016/j.jtice.2017.11.007
Liao Y, Te, Matsagar BM, Wu KCW (2018) Metal-Organic Framework (MOF)-Derived Effective Solid Catalysts for Valorization of Lignocellulosic Biomass. ACS Sustain Chem Eng 6:13628–13643. https://doi.org/10.1021/acssuschemeng.8b03683
Konnerth H, Matsagar BM, Chen SS, Prechtl MHJ, Shieh FK, Wu KCW (2020) Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coord Chem Rev 416:213319. https://doi.org/10.1016/j.ccr.2020.213319
Liao Y, Te, Nguyen VC, Ishiguro N, Young AP, Tsung CK, Wu KCW (2020) Engineering a homogeneous alloy-oxide interface derived from metal-organic frameworks for selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Appl Catal B Environ 270:118805. https://doi.org/10.1016/j.apcatb.2020.118805
Huang YY, Konnerth H, Yeh JY, Prechtl, MHg, Wen CY, Wu KCW (2019) De novo synthesis of Cr-embedded MOF-199 and derived porous CuO/CuCr2O4 composites for enhanced phenol hydroxylation. Green Chem 21:1889–1894. https://doi.org/10.1039/c8gc03348j
Mohamed MG, Ahmed MMM, Du WT, Kuo SW (2021) Meso/Microporous Carbons from Conjugated Hyper-Crosslinked Polymers Based on Tetraphenylethene for High-Performance CO2 Capture and Supercapacitor. Molecules 26:738
Mohamed MG, Lee CC, EL-Mahdy AFM, Lüder J, Yu MH, Li Z, Zhu Z, Chueh CC, Kuo SW (2020) Exploitation of two-dimensional conjugated covalent organic frameworks based on tetraphenylethylene with bicarbazole and pyrene units and applications in perovskite solar cells. J Mater Chem A 8:11448–11459. https://doi.org/10.1039/d0ta02956d
Lee CC, Chen CI, Liao Y, Te, Wu KCW, Chueh CC (2019) Enhancing Efficiency and Stability of Photovoltaic Cells by Using Perovskite/Zr-MOF Heterojunction Including Bilayer and Hybrid Structures. Adv Sci 6:1801715. https://doi.org/10.1002/advs.201801715
Chueh CC, Chen CI, Su YA, Konnerth H, Yu YJ, Kung CW, Wu KCW (2019) Harnessing MOF materials in photovoltaic devices: Recent advances, challenges, and perspectives. J Mater Chem A 7:17079–17095. https://doi.org/10.1039/c9ta03595h
Yang Q, Wang Y, Wang J, Liu F, Hu N, Pei H, Yang W, Li Z, Suo Y, Wang J (2018) High effective adsorption/removal of illegal food dyes from contaminated aqueous solution by Zr-MOFs (UiO-67). Food Chem 254:241–248. https://doi.org/10.1016/j.foodchem.2018.02.011
Yang M, Bai Q (2019) Flower-like hierarchical Ni-Zn MOF microspheres: Efficient adsorbents for dye removal. Colloids Surfaces A Physicochem Eng Asp 582:123795. https://doi.org/10.1016/j.colsurfa.2019.123795
Chen C, Zhang M, Guan Q, Li W (2012) Kinetic and thermodynamic studies on the adsorption of xylenol orange onto MIL-101(Cr). Chem Eng J 183:60–67. https://doi.org/10.1016/j.cej.2011.12.021
Jia Y, Jin Q, Li Y, Sun Y, Huo J, Zhao X (2015) Investigation of the adsorption behaviour of different types of dyes on MIL-100(Fe) and their removal from natural water. Anal Methods 7:1463–1470. https://doi.org/10.1039/c4ay02726d
Karmakar S, Roy D, Janiak C, De S (2019) Insights into multi-component adsorption of reactive dyes on MIL-101-Cr metal organic framework: Experimental and modeling approach. Sep Purif Technol 215:259–275. https://doi.org/10.1016/j.seppur.2019.01.013
Li Y, Zhou K, He M, Yao J (2016) Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption. Microporous Mesoporous Mater 234:287–292. https://doi.org/10.1016/j.micromeso.2016.07.039
Zhang ZH, Zhang JL, Liu JM, Xiong ZH, Chen X (2016) Selective and competitive adsorption of azo dyes on the metal–organic framework ZIF-67. Water Air Soil Pollut 227:1–12. https://doi.org/10.1007/s11270-016-3166-7
Li C, Xiong Z, Zhang J, Wu C (2015) The strengthening role of the amino group in metal–organic framework MIL-53 (Al) for methylene blue and malachite green dye adsorption. J Chem Eng Data 60:3414–3422. https://doi.org/10.1021/acs.jced.5b00692
Luo XP, Fu SY, Du YM, Guo JZ, Li B (2017) Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101. Microporous Mesoporous Mater 237:268–274. https://doi.org/10.1016/j.micromeso.2016.09.032
Du XD, Wang CC, Liu JG, Zhao XD, Zhong J, Li YX, Li J, Wang P (2017) Extensive and selective adsorption of ZIF-67 towards organic dyes: Performance and mechanism. J Colloid Interface Sci 506:437–441. https://doi.org/10.1016/j.jcis.2017.07.073
Kobielska PA, Howarth AJ, Farha OK, Nayak S (2018) Metal–organic frameworks for heavy metal removal from water. Coord Chem Rev 358:92–107. https://doi.org/10.1016/j.ccr.2017.12.010
Wen J, Fang Y, Zeng G (2018) Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: A review of studies from the last decade. Chemosphere 201:627–643. https://doi.org/10.1016/j.chemosphere.2018.03.047
Esrafili L, Safarifard V, Tahmasebi E, Esrafili MD, Morsali A (2018) Functional group effect of isoreticular metal-organic frameworks on heavy metal ion adsorption. New J Chem 42:8864–8873. https://doi.org/10.1039/c8nj01150h
Zhao J, Xu L, Su Y, Yu H, Liu H, Qian S, Zheng W, Zhao Y (2021) Zr-MOFs loaded on polyurethane foam by polydopamine for enhanced dye adsorption. J Environ Sci (China) 101:177–188. https://doi.org/10.1016/j.jes.2020.08.021
Shi M, Lin D, Huang R, Qi W, Su R, He Z (2020) Construction of a Mercapto-Functionalized Zr-MOF/Melamine Sponge Composite for the Efficient Removal of Oils and Heavy Metal Ions from Water. Ind Eng Chem Res 59:13220–13227. https://doi.org/10.1021/acs.iecr.0c00731
Huang L, He M, Chen B, Hu B (2018) Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere 199:435–444. https://doi.org/10.1016/j.chemosphere.2018.02.019
Yang Q, Ren SS, Zhao Q, Lu R, Cheng H, Chen Z, Zheng H (2018) Selective separation of methyl orange from water using magnetic ZIF-67 composites. Chem Eng J 333:49–57. https://doi.org/10.1016/j.cej.2017.09.099
Mahmoud ME, Mohamed AK (2020) Novel derived pectin hydrogel from mandarin peel based metal-organic frameworks composite for enhanced Cr(VI) and Pb(II) ions removal. Int J Biol Macromol 164:920–931. https://doi.org/10.1016/j.ijbiomac.2020.07.090
Niu C, Zhang N, Hu C, Zhang C, Zhang H, Xing Y (2021) Preparation of a novel citric acid-crosslinked Zn-MOF/chitosan composite and application in adsorption of chromium(VI) and methyl orange from aqueous solution. Catbohydrate Polym 258:117644
Claudio-Rizo JA, Rangel-Argote M, Castellano LE, Delgado J, Mata Mata JL, Mendoza Novelo B (2017) Influence of residual composition on the structure and properties of extracellular matrix derived hydrogels. Mater Sci Eng C 79:793–801. https://doi.org/10.1016/j.msec.2017.05.118
Mendoza-Novelo B, Mata-Mata JL, Vega-González A, Cauich-Rodríguez JV, Marcos-Fernández A (2014) Synthesis and characterization of protected oligourethanes as crosslinkers of collagen-based scaffolds. J Mater Chem B 2:2874–2882. https://doi.org/10.1039/c3tb21832e
Ranjbar M, Taher MA, Sam A (2016) Mg-MOF-74 nanostructures: facile synthesis and characterization with aid of 2,6-pyridinedicarboxylic acid ammonium. J Mater Sci Mater Electron 27:1449–1456. https://doi.org/10.1007/s10854-015-3910-6
Lan J, Qu Y, Zhang X, Haoran M, Ping X, Jianmin S (2020) A novel water-stable MOF Zn(Py)(Atz) as heterogeneous catalyst for chemical conversion of CO2 with various epoxides under mild conditions. J CO2 Util 35:216–224. https://doi.org/10.1016/j.jcou.2019.09.019
Faria PCC, Órfao JJM, Pereira MFR (2004) Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res 38:2043–2052. https://doi.org/10.1016/j.watres.2004.01.034
Gao D, Liu Z, Cheng Z (2021) 2D Ni-Fe MOF nanosheets reinforced poly(vinyl alcohol) hydrogels with enhanced mechanical and tribological performance. Colloids Surfaces A Physicochem Eng Asp 610:125934. https://doi.org/10.1016/j.colsurfa.2020.125934
Gladysiak A, Nguyen TN, Anderson SL, Boyd PG, Palgrave RG, Bacsa J, Smit B, Rosseinsky MJ, Stylianou KC (2018) Shedding light on the protonation states and location of protonated N atoms of adenine in metal–organic frameworks. Inorg Chem 57:1888–1900. https://doi.org/10.1021/acs.inorgchem.7b02761
Tseng RL, Wu FC (2008) Inferring the favorable adsorption level and the concurrent multi-stage process with the Freundlich constant. J Hazard Mater 155:277–287. https://doi.org/10.1016/j.jhazmat.2007.11.061
Hou A, Chen H, Xu Y, Yang X, Zhang Y, Xie K, Gao A (2020) Rapid and environmental-friendly continuous gel-dyeing of polyacrylonitrile fi ber with cationic dyes. J Clean Prod 274:122935. https://doi.org/10.1016/j.jclepro.2020.122935
Regti A, Lakbaibi Z, Ben El Ayouchia H, El Haddad M, Laamari MR, El Himri M, Haounati R (2021) Hybrid Methods Combining Computational and Experimental Measurements for the Uptake of Eriochrome Black T Dye Utilising Fish Scales. Int J Environ Anal Chem 00:1–20. https://doi.org/10.1080/03067319.2021.1929199
Zhang Q, Hu XM, Wu MY, Wang MM, Zhao YY, Li TT (2019) Synthesis and performance characterization of poly(vinyl alcohol)-xanthan gum composite hydrogel. React Funct Polym 136:34–43. https://doi.org/10.1016/j.reactfunctpolym.2019.01.002
Kaur S, Jindal R (2018) Synthesis of interpenetrating network hydrogel from (gum copal alcohols-collagen)-co-poly(acrylamide) and acrylic acid: Isotherms and kinetics study for removal of methylene blue dye from aqueous solution. Mater Chem Phys 220:75–86. https://doi.org/10.1016/j.matchemphys.2018.08.008
Chen Y, Ma Y, Lu W, Guo Y, Zhu Y, Lu H, Song Y (2018) Environmentally friendly gelatin/β-cyclodextrin composite fiber adsorbents for the efficient removal of dyes from wastewater. Molecules 23:2473. https://doi.org/10.3390/molecules23102473
Ramakrishnan RK, Padil VVT, Wacławek S, Cerník M, Varma RS (2021) Eco-friendly and economic, adsorptive removal of cationic and anionic dyes by bio-based karaya gum—chitosan sponge. Polymers (Basel) 13:251. https://doi.org/10.3390/polym13020251
Singha NR, Roy C, Mahapatra M et al (2019) Scalable synthesis of collagenic-waste and natural rubber-based biocomposite for removal of Hg (II) and dyes: Approach for cost-friendly waste management. ACS Omega 4:421–436. https://doi.org/10.1021/acsomega.8b02799
Mitra M, Mahapatra M, Dutta A, Roy JSD, Mitra M, Chattopadhyay PK (2019) Carbohydrate and collagen-based doubly-grafted interpenetrating terpolymer hydrogel via N–H activated in situ allocation of monomer for superadsorption of Pb(II), Hg(II), dyes, vitamin-C, and p-nitrophenol. J Hazard Mater 369:746–762. https://doi.org/10.1016/j.jhazmat.2018.12.019
Yu M, Han Y, Li J, Wang L (2018) Magnetic N-doped carbon aerogel from sodium carboxymethyl cellulose/collagen composite aerogel for dye adsorption and electrochemical supercapacitor. Int J Biol Macromol 115:185–193. https://doi.org/10.1016/j.ijbiomac.2018.04.012
Karmakar M, Mahapatra M, Dutta A, Chattopadhyay PK, Singha NR (2017) Fabrication of semisynthetic collagenic materials for mere/synergistic adsorption: A model approach of determining dye allocation by systematic characterization and optimization. Int J Biol Macromol 102:438–456. https://doi.org/10.1016/j.ijbiomac.2017.04.044