Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Loại bỏ uranium trên bề mặt thép bằng gel xốp polyvinyl alcohol
Tóm tắt
Trong nghiên cứu này, một vật liệu gel xốp dựa trên polyvinyl alcohol đã được chuẩn bị thành công để loại bỏ ô nhiễm uranium trên bề mặt thép không gỉ. Vật liệu đã được thử nghiệm thông qua phổ hồng ngoại và phân tích nhiệt trọng lượng. Quá trình làm sạch chất ô nhiễm của gel xốp trên bề mặt thép không gỉ đã được phân tích bằng SEM/EDS và XPS. Kết quả cho thấy gel xốp có tính chất tẩy rửa tốt, và hệ số loại bỏ ô nhiễm uranium phóng xạ trên bề mặt thép không gỉ có thể đạt tới 90,9, có vẻ tốt hơn so với các phương pháp rửa bằng nước và lau chùi.
Từ khóa
#uranium #polyvinyl alcohol #gel xốp #thép không gỉ #tẩy rửa #phân tích nhiệt trọng lượngTài liệu tham khảo
Handley-Sidhu S, Worsfold PJ, Livens FR et al (2009) Biogeochemical controls on the corrosion of depleted uranium alloy in subsurface soils. Environ Sci Technol. https://doi.org/10.1021/es901276e
Ran Y, Wang S, Zhao Y et al (2020) A review of biological effects and treatments of inhaled depleted uranium aerosol. J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2020.106357
Akash S, Sivaprakash B, Raja VCV et al (2022) Remediation techniques for uranium removal from polluted environment–review on methods, mechanism and toxicology. Environ Pollut. https://doi.org/10.1016/j.envpol.2022.119068
Kaminski MD, Oster C, Kivenas N et al (2021) Penetration of fission product ions into complex solids and the effect of ionic wash methods. Environ Sci Pollut Res 28:10114–10124. https://doi.org/10.1007/s11356-020-11392-w
Real J, Persin F, Camarasa-Claret C (2002) Mechanisms of desorption of Cs-134 and Sr-85 aerosols deposited on urban surfaces. J Environ Radioact 62:1–15. https://doi.org/10.1016/S0265-931X(01)00136-9
Rao TV, Vook RW, Meyer W (1987) Characterization of 316 stainless steel surfaces used in BWR recirculation piping. Nucl Eng Des 101:167–174. https://doi.org/10.1016/0029-5493(87)90031-8
Zhang H, Xi H, Li Z et al (2021) The stability and decontamination of surface radioactive contamination of biomass-based antifreeze foam. Coll Surfaces A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2021.126774
Lemesre L, Frances F, Grandjean A, Gossard A (2019) Hybrid colloidal suspensions tailored as gels to remove radioactive bitumen stains. J Environ Manage 232:660–665. https://doi.org/10.1016/j.jenvman.2018.11.125
Zhong L, Lei J, Deng J et al (2021) Existing and potential decontamination methods for radioactively contaminated metals: a review. Prog Nucl Energy 139:103854. https://doi.org/10.1016/j.pnucene.2021.103854
Yoon I-H, Kim SE, Choi M et al (2020) Highly enhanced foams for stability and decontamination efficiency with a fluorosurfactant silica nanoparticles and Ce(IV) in radiological application. Environ Technol Innov 18:100744. https://doi.org/10.1016/j.eti.2020.100744
Viltres H, López YC, Leyva C et al (2021) Polyamidoamine dendrimer-based materials for environmental applications: a review. J Mol Liq 334:116017. https://doi.org/10.1016/j.molliq.2021.116017
Miller MJ, Fogler S (1995) A mechanistic investigation of waterflood diversion using foamed gels. SPE Prod Facil 10:62–69. https://doi.org/10.2118/24662-PA
Friedmann F, Hughes TL, Smith ME et al (1999) Development and testing of a foam-gel technology to improve conformance of the rangely CO2 flood. SPE Reservoir Eval Eng 2:4–13. https://doi.org/10.2118/54429-PA
Miller MJ, Fogler HS (1995) Prediction of fluid distribution in porous-media treated with foamed geL. Chem Eng Sci 50:3261–3274. https://doi.org/10.1016/0009-2509(95)00156-Y
Romero-Zeron L, Kantzas A (2007) The effect of wettability and pore geometry on foamed-gel-blockage performance. SPE Reservoir Eval Eng 10:150–163. https://doi.org/10.2118/89388-PA
Ren W, Guo Q, Wang Z (2016) Application of foam-gel technology for suppressing coal spontaneous combustion in coal mines. Nat Hazards 84:1207–1218. https://doi.org/10.1007/s11069-016-2499-2
Richard-Denis A, Thompson C, Mac-Thiong J-M (2017) Effectiveness of a multi-layer foam dressing in preventing sacral pressure ulcers for the early acute care of patients with a traumatic spinal cord injury: comparison with the use of a gel mattress. Int Wound J 14:874–881. https://doi.org/10.1111/iwj.12710
Wu ZY, Hill RG, Yue S et al (2011) Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique. Acta Biomater 7:1807–1816. https://doi.org/10.1016/j.actbio.2010.11.041
Kakar A, Newby EE, Ghosh S et al (2011) A randomised clinical trial to assess maintenance of gingival health by a novel gel to foam dentifrice containing 0.1%w/w o-cymen-5-ol, 0.6%w/w zinc chloride. Int Dent J 613:21–27. https://doi.org/10.1111/j.1875-595X.2011.00045.x
Zhang K, Wang S, He Z et al (2020) Study on acrylate peelable nuclear detergent for film formation at low temperature. Appl Radiat Isot. https://doi.org/10.1016/j.apradiso.2020.109187
Deleurence R, Saison T, Lequeux F, Monteux C (2015) Time scales for drainage and imbibition in gellified foams: application to decontamination processes. Soft Matter 11:7032–7037. https://doi.org/10.1039/c5sm01158b
Ben Djemaa I, Auguste S, Drenckhan-Andreatta W, Andrieux S (2021) Hydrogel foams from liquid foam templates: properties and optimisation. Adv Coll Interface Sci 294:102478. https://doi.org/10.1016/j.cis.2021.102478
Choi D, Khan MH, Jung J (2019) Crosslinking of PVA/alginate carriers by glutaraldehyde with improved mechanical strength and enhanced inhibition of deammonification sludge. Int Biodeterior Biodegrad 145:104788. https://doi.org/10.1016/j.ibiod.2019.104788
Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng, C 28:539–548. https://doi.org/10.1016/j.msec.2007.10.088
Wang H, Wei X, Du Y, Wang D (2019) Effect of water-soluble polymers on the performance of dust-suppression foams: wettability, surface viscosity and stability. Coll Surf A Physicochem Eng Asp 568:92–98. https://doi.org/10.1016/j.colsurfa.2019.01.062
Yanagisawa N, Tani M, Kurita R (2021) Dynamics and mechanism of liquid film collapse in a foam. Soft Matter 17:1738–1745. https://doi.org/10.1039/D0SM02153A
Shi Q, Qin B, Xu Y et al (2022) Experimental investigation of the drainage characteristic and stability mechanism of gel-stabilized foam used to extinguish coal fire. Fuel 313:122685. https://doi.org/10.1016/j.fuel.2021.122685
Liao H, Liu Y, Lin S (2020) Exploitation of acetalization process of poly(vinyl alcohol) for the formation of crosslinked poly(vinyl formal) foams. Polym Eng Sci 60:2023–2033. https://doi.org/10.1002/pen.25449
Li Y, Song Y, Li J et al (2018) A scalable ultrasonic-assisted and foaming combination method preparation polyvinyl alcohol/phytic acid polymer sponge with thermal stability and conductive capability. Ultrason Sonochem 42:18–25. https://doi.org/10.1016/j.ultsonch.2017.11.014
Mallakpour S, Abdolmaleki A, Khalesi Z, Borandeh S (2015) Surface functionalization of GO, preparation and characterization of PVA/TRIS-GO nanocomposites. Polymer 81:140–150. https://doi.org/10.1016/j.polymer.2015.11.005
Zhou T, Cheng X, Pan Y et al (2019) Mechanical performance and thermal stability of polyvinyl alcohol–cellulose aerogels by freeze drying. Cellulose 26:1747–1755. https://doi.org/10.1007/s10570-018-2179-3
Kim K-J, Lee S-B, Han N-W (1994) Kinetics of crosslinking reaction of PVA membrane with glutaraldehyde. Korean J Chem Eng 11:41–47. https://doi.org/10.1007/BF02697513
Tang C, Saquing CD, Harding JR, Khan SA (2010) In situ cross-linking of electrospun poly(vinyl alcohol) nanofibers. Macromolecules 43:630–637. https://doi.org/10.1021/ma902269p
Qiu K, Netravali AN (2012) Bacterial cellulose-based membrane-like biodegradable composites using cross-linked and noncross-linked polyvinyl alcohol. J Mater Sci 47:6066–6075. https://doi.org/10.1007/s10853-012-6517-9
Zhao G, Dai C, Wen D, Fang J (2016) Stability mechanism of a novel three-phase foam by adding dispersed particle gel. Coll Surf A Physicochem Eng Asp 497:214–224. https://doi.org/10.1016/j.colsurfa.2016.02.037
Noh W, Kim TH, Lee K-W, Lee TS (2020) Selective adsorption of sodium dodecylbenzenesulfonate from a Cs ion mixture by electrospun mesoporous silica nanofibers. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.127391
Rotariu T, Pulpea D, Toader G et al (2022) Peelable nanocomposite coatings: “Eco-Friendly” tools for the safe removal of radiopharmaceutical spills or accidental contamination of surfaces in general-purpose radioisotope laboratories. Pharmaceutics 14:2360. https://doi.org/10.3390/pharmaceutics14112360
Fu Z-Z, Yao Y-H, Guo S-J et al (2022) Effect of plasticization on stretching stability of poly(vinyl alcohol) films: a case study using glycerol and water. Macromol Rapid Commun. https://doi.org/10.1002/marc.202200296
Lee SD (2017) Evaluation of low-tech indoor remediation methods following wide area radiological/nuclear incidents. Environmental Protection Agency, U.S
Lee SD (2012) Water wash down of radiological dispersal device (RDD) material on urban surfaces: effect of washing conditions on cs removal efficacy. National Homeland Security Research Center
Song J-W, Zeng D-L, Fan L-W (2020) Temperature dependence of contact angles of water on a stainless steel surface at elevated temperatures and pressures: In situ characterization and thermodynamic analysis. J Colloid Interface Sci 561:870–880. https://doi.org/10.1016/j.jcis.2019.11.070
Kim D, Kim JG, Chu CN (2016) Aging effect on the wettability of stainless steel. Mater Lett 170:18–20. https://doi.org/10.1016/j.matlet.2016.01.107
Estrade-Szwarckopf H (2004) XPS photoemission in carbonaceous materials: a “defect” peak beside the graphitic asymmetric peak. Carbon 42:1713–1721. https://doi.org/10.1016/j.carbon.2004.03.005
Donald SB, Dai ZR, Davisson ML et al (2017) An XPS study on the impact of relative humidity on the aging of UO2 powders. J Nucl Mater 487:105–112. https://doi.org/10.1016/j.jnucmat.2017.02.016