Removal of pharmaceuticals and personal care products (PPCPs) from water by adsorption on aluminum pillared clay

Springer Science and Business Media LLC - Tập 27 Số 2 - Trang 383-393 - 2020
Manisha Chauhan1, Vipin K. Saini1, Surindra Suthar1
1School of Environment and Natural Resources (SENR), Doon University, Dehradun, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

L. Artok, H. Schobert, P.B. Malla, S. Komarneni, Intercalated metal-clay catalysts in direct liquefaction of bituminous coal. Energy Fuels 7, 430–431 (1993). https://doi.org/10.1021/ef00039a016

B.M. Babić, S.K. Milonjić, M.J. Polovina, B.V. Kaludierović, Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon 37, 477–481 (1999). https://doi.org/10.1016/S0008-6223(98)00216-4

M. Bagheri, M. Mohseni, A study of enhanced performance of VUV/UV process for the degradation of micropollutants from contaminated water. J. Hazard. Mater. 294, 1–8 (2015). https://doi.org/10.1016/j.jhazmat.2015.03.036

F. Baquero, J.L. Martinez, R. Canton, Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 19(3), 260–265 (2008). https://doi.org/10.1016/j.copbio.2008.05.006

A. Bebu, L. Szabo, N. Leopold, C. Berindean, L. David, IR, Raman, SERS and DFT study of amoxicillin. J. Mol. Struct. 993, 52–56 (2011). https://doi.org/10.1016/j.molstruc.2010.11.067

F. Bergaya, G. Lagaly, Chapter 1: General Introduction: clays, clay minerals and clay science in handbook of clay science, 1st ed. Developments in Clay Science, vol. 1. (Elsevier, The Netherlands, 2006), pp. 1–18. https://doi.org/10.1016/S1572-4352(05)01001-9 .

A.B.A. Boxall, D.W. Kolpin, B. Halling-Sorensen, J. Tolls, Are veterinary medicines causing environmental risks? Environ. Sci. Technol. 37(15), 286a–294a (2003). https://doi.org/10.1021/es032519b

S.Y. Chun, W.J. Chung, S.S. Kim, J.T. Kim, S.W. Chang, Optimization of the TiO2/Ge composition by the response surface method of photocatalytic degradation under ultraviolet– irradiation and the toxicity reduction of amoxicillin. J. Ind. Eng. Chem. 27, 291–296 (2015). https://doi.org/10.1016/j.jiec.2015.01.003

Del Castillo, H.L., Grange, P., 1993. Preparation and catalytic activity of titanium pillared montmorillonite. Appl. Catal. A.103,23–34. https://doi.org/10.1016/0926-860X(93)85170-T .

X.V. Doorslaer, J. Dewulf, H.V. Langenhove, K. Demeestere, Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci. Total Environ. 500–501, 250–269 (2014). https://doi.org/10.1016/j.scitotenv.2014.08.075

E.S. Elmolla, M. Chaudhuri, Photocatalytic degradation of amoxicillin, ampicillin & cloxacillin antibiotics in aqueous solution using UV/TiO2 photocatalysis. Desalination 252, 46–52 (2010). https://doi.org/10.1016/j.desal.2009.11.003

H. Fazelirad, M. Ranjbar, M.A. Taher, G. Sargazi, Preparation of magnetic multiwalled carbon nanotubes for an efficient adsorption and spectrophotometric determination of amoxicillin. J. Ind. Eng. Chem. 21, 889–892 (2015). https://doi.org/10.1016/j.jiec.2014.04.028

H. Freundlich, Over the adsorption in solution. J. Phys. Chem. 57, 385–470 (1906). https://doi.org/10.1515/zpch-1907-5723

N.D. García, A.Z. Gómez, S. Cantarero, A. Navalón, J.L. Vílchez, Simultaneous determination of 13 quinoline antibiotic derivatives in waste water samples using solid-phase extraction and ultra-performance liquid chromatography–tandem mass spectrometry. Micro chem. J. 106, 323–333 (2013). https://doi.org/10.1016/j.microc.2012.09.002

R.K. George, S.T. Howard, R.E. Joseph, S.D.V. SIVA, Ion-Exchange Method for the Determination of Plasma Ammonia Nitrogen with the Berthelot Reaction. Std. Method Clinic. Chem. 6, 115–126 (1970). https://doi.org/10.1016/B978-0-12-609106-9.50017-8

S.M. Ghnimi, N.F. Srasra, Promoting effect of cerium on the characteristic and catalytic activity of Al, Zr, and Al–Zr pillared clay. Appl. Clay Sci. 88–89, 214–220 (2014). https://doi.org/10.1016/j.clay.2013.10.030

A. Gill, F.C.C. Assis, S. Albeniz, S.A. Korili, Removal of dyes from waste waters by adsorption on pillared clays. Chem. Engg. J. 168, 1032–1040 (2011). https://doi.org/10.1016/j.cej.2011.01.078

A. Gill, M. Montes, Analysis of the microporosity in pillared clays. Langmuir 10, 291–297 (1995). https://doi.org/10.1021/la00013a043

D.L. Guerra, C. Airoldi, V.P. Lemos, R.S. Angelica, Adsorptive, thermodynamic and kinetic performances of Al/Ti and Al/Zr-pillared clays from Brazilian Amazon region for zinc cation removal. J. Hazard. Mater. 155, 230–242 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.054

Y.S. Ho, G. Mckay, Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451–465 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5

V. Homem, A. Alves, L. Santos, Amoxicillin degradation at ppb levels by Fenton’s oxidation using design of experiments. Sci. Total Environ. 408, 6272–6280 (2010). https://doi.org/10.1016/j.scitotenv.2010.08.058

K. Ikehata, N.J. Naghashkar, M.G. El-Din, Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review. Ozone Sci. Eng. 2(6), 353–414 (2006). https://doi.org/10.1080/01919510600985937

M.E.R. Jalil, M. Baschini, E.R. Castellon, Effect of Al/Clay ratio on the thiabendazol by aluminium pillared clays. Appl. Clay Sci. 87, 245–253 (2014). https://doi.org/10.1016/j.clay.2013.11.014

D. Kanakaraju, J. Kockler, C.A. Motti, B.D. Glass, M. Oelgemoller, Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin. Appl. Catal. B. 166–167, 45–55 (2015). https://doi.org/10.1016/j.apcatb.2014.11.001

D. Karamanis, P.A. Assismakopoulos, Efficiency of aluminum-pillared montmorillonite on the removal of cesium and copper from aqueous solutions. Water Res. 41, 1897–1906 (2007). https://doi.org/10.1016/j.watres.2007.01.053

J.T. Kloprogge, Synthesis of smectites and porous pillared clay catalysts: a review. J. Porous. Mater. 5, 5–41 (1998). https://doi.org/10.1023/A:100962591

V. Kuroki, G.E. Bosco, P.S. Fadini, A.A. Mozeto, Use of a La (III)-modified bentonite for effective phosphate removal from aqueous media. J. Hazard. Mater. 274, 124–131 (2014). https://doi.org/10.1016/j.jhazmat.2014.03.023

S. Lagergren, Zur Theorie der Sogenannten Adsorption Gelöster Stoffe. Kungliga Svenska Vetenskapsakademiens, Handlingar. 24, 1–39 (1898)

I. Langmuir, The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. J. Amer. Chem. Soc. 38, 2221–2295 (1916). https://doi.org/10.1021/ja02268a002

S. Li, X. Li, D. Wang, Membrane (RO–UF) filtration for antibiotic waste water treatment and recovery of antibiotics. Sep. Purif. Technol. 34, 109–114 (2004). https://doi.org/10.1016/S1383-5866(03)00184-9

P.B. Malla, S. Komarneni, Synthesis of highly microporous and hydrophilic alumina-pillared montmorillonite: water sorption properties. Clays Clay Miner 38, 363–372 (1990). https://doi.org/10.1346/CCMN.1990.0380405

P.B. Malla, P. Ravindranathan, S. Komarneni, R. Roy, Intercalation of copper metal clusters in montmorillonite. Nature 351, 555–557 (1991). https://doi.org/10.1038/351555a0

P.B. Malla, S. Komarneni, Properties and characterization of Al2O3 and SiO2-TiO2 pillared saponite. Clays & Clay Miner. 41, 472–483 (1993). https://doi.org/10.1346/CCMN.1993.0410408

D.M. Manohar, B.F. Noeline, T.S. Anirudhan, Adsorption performance of Al-pillared bentonite clay for the removal of cobalt (II) from aqueous phase. Appl. Clay Sci. 31, 194–206 (2006). https://doi.org/10.1016/j.clay.2005.08.008

H. Mansouri, R.J. Carmona, A. Gomis-Berenguer, S. Souissi-Najar, A. Quederni, C.O. Ania, Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons. J. Colloid Interface Sci. 449, 252–260 (2015). https://doi.org/10.1016/j.jcis.2014.12.020

L.M.P. Martínez, J.L. Faria, J.M. Do-na-Rodríguez, C. Fernandez-Rodríguez, A.M.T. Silva, Degradation of diphenhydramine pharmaceutical in aqueous solutions by using two highly active TiO2 photocatalysts: operating parameters and photocatalytic mechanism. Appl. Catal. B 113–114, 221–227 (2012). https://doi.org/10.1016/j.apcatb.2011.11.041

Moore, D.M., Reynolds, R.C. 1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, 1989: xvi, 322 pp. https://doi.org/10.1180/claymin.1990.025.4.11 .

A. Nikolaou, S. Meric, D. Fatta, Occurrence patterns of pharmaceuticals in water and waste water environments. Anal. Bioanal. Chem. 387(4), 1225–1234 (2007). https://doi.org/10.1007/s00216-006-1035-8

E.K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Res. 43, 2419–2430 (2009). https://doi.org/10.1016/j.watres.2009.02.039

O. Redlich, D.L. Peterson, A useful adsorption isotherm. J. Phys. Chem. 63, 1024–1024 (1959). https://doi.org/10.1021/j150576a611

M.S. Rehman, N. Rashid, M. Ashfaq, A. Saif, N. Ahmad, J.I. Han, Global risk of pharmaceutical contamination from highly populated developing countries. Chemosphere 138, 1045–1055 (2013). https://doi.org/10.1016/j.chemosphere.2013.02.036

Saini, V.K., Chauhan, M., Sharma, B., 2016. Recent advances in nanomaterials based wastewater treatment techniques, in Handbook of Water Resources: Management and Treatment Technologies, Uttarakhand Science Education and Research Centre (USERC).

M.R. Samarghandi, T.J. Al-Musawi, A. Mohseni-Bandpi, M. Zarrabi, Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles. J. Mol. Liq. 211, 431–441 (2015). https://doi.org/10.1016/j.molliq.2015.06.067

P.K. Simar, R. Rekha, N. Sanju, Amoxicillin: A Broad Spectrum Antibiotic. Int. J. Pharm. Pharm. Sci. 3(3), 30–37 (2011)

Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T., 2008. Reporting Physisorption Data for Gas/Solid Systems, in: Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527610044.hetcat0065 .

M.R. SunKou, S. Mendioroz, M.L. Guijarro, A thermal study of Zr-pillared montmorillonite. Thermo chim. Acta. 323, 142–157 (1998). https://doi.org/10.1016/S0040-6031(98)00540-1

V.R.B. Vemula, P. Sharma, Analytical method development and validation for simultaneous estimation of imipramine and diazepam in tablet dosage form by RP-HPLC. Int. J. Pharm. Pharm. Sci. 5(Suppl), 3 (2013)

C. Volzone, Pillaring of different smectite members by chromium species (Cr-PILCs). Micropor. Mesopor. Mater. 49, 197–202 (2001). https://doi.org/10.1016/S1387-1811(01)00423-1

T. Wang, X. Pan, W. Ben, J. Wang, P. Hou, Z. Qiang, Adsorptive removal of antibiotics from water using magnetic ion exchange resin. J. Environ. Sci. 52, 111–117 (2017). https://doi.org/10.1016/j.jes.2016.03.017

W.J. Weber, C.J. Morris, Advances in water pollution research, vol. 2 (Pergamon Press, Oxford, 1962)

P. Yuan, H.P. He, F. Bergaya, D.Q. Wu, Q. Zhou, J.X. Zhu, Synthesis and characterization of delaminated iron-pillared clay with meso-microporous structure. Microporous Mesoporous Mater. 88(1–3), 8–15 (2006). https://doi.org/10.1016/j.micromeso.2005.08.022