Removal of mercury (II) from water using magnetic nanoparticles coated with amino organic ligands and yam peel biomass
Tài liệu tham khảo
Ahmed, 2013, Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water, Mater. Sci. Eng. B, 178, 744, 10.1016/j.mseb.2013.03.011
Amirnia, 2015, Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor–biosorption system, Chem. Eng. J., 264, 863, 10.1016/j.cej.2014.12.016
Bagbi, 2016, Lead (Pb2+) adsorption by monodispersed magnetite nanoparticles: surface analysis and effects of solution chemistry, J. Environ. Chem. Eng., 4, 4237, 10.1016/j.jece.2016.09.026
Barrera, 2009, Surface modification of magnetite nanoparticles for biomedical applications, J. Magn. Magn. Mater., 321, 1397, 10.1016/j.jmmm.2009.02.046
Barrera, 2009, Colloidal dispersions of monodisperse magnetite nanoparticles modified with poly(ethylene glycol), J. Colloid Interface Sci., 329, 107, 10.1016/j.jcis.2008.09.071
Barrera, 2010, Monitoring gelation using magnetic nanoparticles, Soft Matter, 6, 3662, 10.1039/c003284k
Basu, 2017, Adsorption of lead on cucumber Peel, J. Clean. Prod. Elsevier, 151, 603, 10.1016/j.jclepro.2017.03.028
Berlin, 2015
Bourgeat-Lami, 1998, Encapsulation of inorganic particles by dispersion polymerization in polar media, J. Colloid Interface Sci., 197, 293, 10.1006/jcis.1997.5265
Cai, 2010, Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles, J. Magn. Magn. Mater., 322, 2938, 10.1016/j.jmmm.2010.05.009
Chen, 2018
Cohen, 2008, One-step synthesis and characterization of ultrastable and amorphous Fe3O4 colloids capped with cysteine molecules, J. Phys. Chem. C, 112, 15429, 10.1021/jp805090y
Crespo-López, 2009, Mercury and human genotoxicity: critical considerations and possible molecular mechanisms, Pharmacol. Res., 60, 212, 10.1016/j.phrs.2009.02.011
Cui, 2015, EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: adsorption mechanism and separation property, Chem. Eng. J., 281, 1, 10.1016/j.cej.2015.06.043
Dalvand, 2016, Modeling of reactive Blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: optimization, reusability, kinetic and equilibrium studies, J. Magn. Magn. Mater., 404, 179, 10.1016/j.jmmm.2015.12.040
Dash, 2012, Bioremediation of mercury and the importance of bacterial mer genes, Int. Biodeterior. Biodegradation, 75, 207, 10.1016/j.ibiod.2012.07.023
Digigow, 2014, Preparation and characterization of functional silica hybrid magnetic nanoparticles, J. Magn. Magn. Mater. North-Holland, 362, 72, 10.1016/j.jmmm.2014.03.026
Ebrahiminezhad, 2013, Preparation of novel magnetic fluorescent nanoparticles using amino acids, Colloids Surf. B. Biointerfaces, 102, 534, 10.1016/j.colsurfb.2012.08.046
Engku Ali, 2017, Effect of reaction time on structural and optical properties of porous SIO2 nanoparticles, Dig. J. Nanomater. Biostructures. Pergamon, 12, 161
Enniya, 2018, vol. 7, 9
Wang, 2016, Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery, J. Hazard. Mater., 308, 75, 10.1016/j.jhazmat.2016.01.021
Gallios, 2008, Removal of chromium (VI) from water streams: a thermodynamic study, Environ. Chem. Lett., 6, 235, 10.1007/s10311-007-0128-8
García-Sevillano, 2015, Biological interactions between mercury and selenium in distribution and detoxification processes in mice under controlled exposure. Effects on selenoprotein, Chem. Biol. Interact., 229, 82, 10.1016/j.cbi.2015.02.001
Ghasemi, 2012, Thermodynamic and kinetic studies for the adsorption of Hg(II) by nano-TiO2 from aqueous solution, Adv. Powder Technol., 23, 148, 10.1016/j.apt.2011.01.004
Gosnell, 2015, Mercury and methylmercury incidence and bioaccumulation in plankton from the central Pacific Ocean, Mar. Chem., 177, 772, 10.1016/j.marchem.2015.07.005
Gupta, 2005, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26, 3995, 10.1016/j.biomaterials.2004.10.012
Haddad, 2008, Structural and morphological investigation of magnetic nanoparticles based on iron oxides for biomedical applications, Mater. Sci. Eng. C, 28, 489, 10.1016/j.msec.2007.04.014
Hakami, 2012, Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water, Water Res., 46, 3913, 10.1016/j.watres.2012.04.032
Hassanjani-Roshan, 2011, Synthesis of iron oxide nanoparticles via sonochemical method and their characterization, Particuology, 9, 95, 10.1016/j.partic.2010.05.013
Herrera, 2008, Synthesis and functionalization of magnetite nanoparticles with aminopropylsilane and carboxymethyldextran, J. Mater. Chem. The Royal Society of Chemistry, 18, 3650
Herrera, 2008, Multifunctional magnetite nanoparticles coated with fluorescent thermo-responsive polymeric shells, J. Mater. Chem., 18, 855, 10.1039/b718210d
Herrera, 2010, Monitoring colloidal stability of polymer-coated magnetic nanoparticles using AC susceptibility measurements, J. Colloid Interface Sci., 342, 540, 10.1016/j.jcis.2009.10.041
Herrera, 2013, Influence of aging time of oleate precursor on the magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method, J. Magn. Magn. Mater., 328, 41, 10.1016/j.jmmm.2012.09.069
Huang, 2013, Removal of Pb2+ from aqueous solution by adsorption on chemically modified muskmelon peel, Environ. Sci. Pollut. Res. Springer Berlin Heidelberg, 20, 4424, 10.1007/s11356-012-1361-7
Jiang, 2015, A novel magnetic adsorbent based on waste litchi peels for removing Pb(II) from aqueous solution, J. Environ. Manage. Academic Press, 155, 24
Karagöz, 2008, Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption, Bioresour. Technol., 99, 6214, 10.1016/j.biortech.2007.12.019
Kim, 2018, Engineered superparamagnetic nanomaterials for arsenic(<scp>v</scp>) and chromium(<scp>vi</scp>) sorption and separation: quantifying the role of organic surface coatings, Environ. Sci. Nano, 5, 556, 10.1039/C7EN01006K
Korina, 2018, Polymer fibers with magnetic core decorated with titanium dioxide prospective for photocatalytic water treatment, J. Environ. Chem. Eng. Elsevier, 6, 2075, 10.1016/j.jece.2018.03.016
Shen, 2014, Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles, Ceram. Int., 40, 1519, 10.1016/j.ceramint.2013.07.037
Largitte, 2016, A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon, Chem. Eng. Res. Des., 109, 495, 10.1016/j.cherd.2016.02.006
Liao, 2002, Preparation and characterization of a novel magnetic nano-adsorbent, J. Mater. Chem. The Royal Society of Chemistry, 12, 3654
Lin, 2017, Quantitative effects of amination degree on the magnetic iron oxide nanoparticles (MIONPs) using as adsorbents to remove aqueous heavy metal ions, J. Hazard. Mater. Elsevier, 335, 47, 10.1016/j.jhazmat.2017.01.016
Liu, 2008, Biosorption isotherms, kinetics and thermodynamics, Sep. Purif. Technol., 229, 10.1016/j.seppur.2007.10.002
Liu, 2016, Multifunctional nanocomposites Fe3O4@SiO2-EDTA for Pb(II) and Cu(II) removal from aqueous solutions, Appl. Surf. Sci., 369, 267, 10.1016/j.apsusc.2016.02.043
López-Muñoz, 2016, Adsorption of Hg(II) from aqueous solutions using TiO2 and titanate nanotube adsorbents, Appl. Surf. Sci., 367, 91, 10.1016/j.apsusc.2016.01.109
Mahdavian, 2010, Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification, Chem. Eng. J., 159, 264, 10.1016/j.cej.2010.02.041
Maity, 2007, Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media, J. Magn. Magn. Mater., 308, 46, 10.1016/j.jmmm.2006.05.001
Maneechakr, 2017, Adsorption behaviour of Fe(II) and Cr(VI) on activated carbon: surface chemistry, isotherm, kinetic and thermodynamic studies, J. Chem. Thermodyn., 106, 104, 10.1016/j.jct.2016.11.021
Manjuladevi, 2018, Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel, Appl. Water Sci. Springer Berlin Heidelberg, 8, 36, 10.1007/s13201-018-0674-1
Marimón-Bolívar, 2018, Green synthesis with enhanced magnetization and life cycle assessment of Fe 3 O 4 nanoparticles, Environ. Nanotechnology, Monit. Manag., 9, 58, 10.1016/j.enmm.2017.12.003
Nersesyan, 2016, Results of micronucleus assays with individuals who are occupationally and environmentally exposed to mercury, lead and cadmium, Mutat. Res. Mutat. Res., 10.1016/j.mrrev.2016.04.002
Olivero, 1995, Mercurio en cabello de diferentes grupos ocupacionales en una zona de miner??a aurifera en el Norte de Colombia, Rev. sa??de p??blica. Faculdade de Saúde Pública da Universidade de São Paulo, 29, 376, 10.1590/S0034-89101995000500006
Ortiz-Martínez, 2015, Transition metal modified mesoporous silica adsorbents with zero microporosity for the adsorption of contaminants of emerging concern (CECs) from aqueous solutions, Chem. Eng. J., 264, 152, 10.1016/j.cej.2014.11.068
Ortiz-Martínez, 2016, Single and multi-component adsorptive removal of bisphenol a and 2,4-dichlorophenol from aqueous solutions with transition metal modified inorganic-organic pillared clay composites: effect of pH and presence of humic acid, J. Hazard. Mater., 312, 262, 10.1016/j.jhazmat.2016.03.073
Petcharoen, 2012, Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method, Mater. Sci. Eng. B, 177, 421, 10.1016/j.mseb.2012.01.003
Petosa, 2010, Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions, Environ. Sci. Technol. Am. Chem. Soc., 44, 6532, 10.1021/es100598h
Plazinski, 2009, Theoretical models of sorption kinetics including a surface reaction mechanism: a review, Adv. Colloid Interface Sci., 2, 10.1016/j.cis.2009.07.009
Raji, 2014, Kinetic and thermodynamic studies of Hg(II) adsorption onto MCM-41 modified by ZnCl2, Appl. Surf. Sci., 301, 568, 10.1016/j.apsusc.2014.02.136
Sánchez, 2010, Magnetoviscosity of dilute magnetic fluids in oscillating and rotating magnetic fields, Phys. Fluids. AIP Publishing, 22, 043304, 10.1063/1.3370119
Santos, 2016, Synthesis, characterization and cytotoxicity of glutathione- and PEG-glutathione-superparamagnetic iron oxide nanoparticles for nitric oxide delivery, Appl. Surf. Sci., 367, 26, 10.1016/j.apsusc.2016.01.039
Schwertmann, 2006
Selvanathan, 2017, Adsorption of copper(II) ion from aqueous solution using biochar derived from rambutan (nepheliumlappaceum) Peel: feedforward neural network modelling study, Water, Air, Soil Pollut., 228, 299, 10.1007/s11270-017-3472-8
Shan, 2015, Removal of Hg(II) by poly(1-vinylimidazole)-grafted Fe3O4@SiO2 magnetic nanoparticles, Water Res., 69, 252, 10.1016/j.watres.2014.11.030
Si, 2004, Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes, Chem. Mater. American Chemical Society, 16, 3489
Singh, 2017, Simple and green fabrication of recyclable magnetic highly hydrophobic sorbents derived from waste orange peels for removal of oil and organic solvents from water surface, J. Environ. Chem. Eng. Elsevier, 5, 5250, 10.1016/j.jece.2017.09.060
Sinha, 2012, Studies on mercury bioremediation by alginate immobilized mercury tolerant bacillus cereus cells, Int. Biodeterior. Biodegradation, 71, 1, 10.1016/j.ibiod.2011.12.014
Smylie, 2016, Mercury bioaccumulation in an estuarine predator: biotic factors, abiotic factors, and assessments of fish health, Environ. Pollut., 214, 169, 10.1016/j.envpol.2016.04.007
Sun, 2017, Aqueous Hg(II) immobilization by chitosan stabilized magnetic iron sulfide nanoparticles, Sci. Total Environ., 15, 1074
Tang, 2016, Concentrations, diffusive fluxes and toxicity of heavy metals in pore water of the Fuyang River, haihe Basin, Ecotoxicol. Environ. Saf., 127, 80, 10.1016/j.ecoenv.2016.01.013
Tejada, 2014, Estudio de modificación química y física de biomasa (Citrus sinensis Y Musa paradisiaca) para la adsorción de metales pesados en solución, Rev. Luna Azul, 124, 10.17151/luaz.2014.39.8
Tejeda-Benitez, 2016, Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River Colombia, Environ. Pollut., 212, 238, 10.1016/j.envpol.2016.01.057
Tejeda Benitez, 2015, Absorción de Cromo Hexavalente en soluciones acuosas por cascaras de naranja (Citrus sinensis), Prod. más Limpia, 10, 9, 10.22507/pml.v10n1a1
Tejeda Benitez, 2015, Absorción de Cromo Hexavalente en soluciones acuosas por cascaras de naranja (Citrus sinensis), Prod. más Limpia, 10, 9, 10.22507/pml.v10n1a1
Venkateswarlu, 2014, A novel green synthesis of Fe3O4 magnetic nanorods using Punica Granatum rind extract and its application for removal of Pb(II) from aqueous environment, Arab. J. Chem.
Vieira, 2005, Mercury ion recovery using natural and crosslinked chitosan membranes, Adsorption, 11, 731, 10.1007/s10450-005-6015-3
Vieira, 2006, Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres, Water Res., 40, 1726, 10.1016/j.watres.2006.02.027
Vilardi, 2018, Heavy metals adsorption by banana peels micro-powder: equilibrium modeling by non-linear models, Chinese J. Chem. Eng. Elsevier, 26, 455, 10.1016/j.cjche.2017.06.026
Wang, 2012, Remediation of mercury contaminated sites - a review, J. Hazard. Mater., 221–222, 1
Wang, 2014, pH dependence and thermodynamics of Hg(II) adsorption onto chitosan-poly(vinyl alcohol) hydrogel adsorbent, Colloids Surf. A Physicochem. Eng. Asp., 441, 51, 10.1016/j.colsurfa.2013.08.068
Windham-Myers, 2014, Methylmercury cycling in wetlands managed for rice agriculture and wildlife: implications for methylmercury production, transport, and bioaccumulation, Sci. Total Environ., 484, 219, 10.1016/j.scitotenv.2014.01.046
Windmöller, 2015, The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): implications for the mercury cycle, Ecotoxicol. Environ. Saf., 112, 201, 10.1016/j.ecoenv.2014.11.009
Shen, 2014, One-step synthesis of water-dispersible cysteine functionalized magnetic Fe3O4 nanoparticles for mercury(II) removal from aqueous solutions, Appl. Surf. Sci., 317, 1028, 10.1016/j.apsusc.2014.09.033
Wang, 2016, Influence of thermal treatment on fixation rate and leaching behavior of heavy metals in soils from a typical e-waste processing site, J. Environ. Chem. Eng., 4, 82, 10.1016/j.jece.2015.11.006
Xin, 2012, Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles, Chem. Eng. J., 184, 132, 10.1016/j.cej.2012.01.016
Wang, 2016, Functional nanomaterials: study on aqueous Hg(II) adsorption by magnetic Fe3O4@SiO2-SH nanoparticles, J. Taiwan Inst. Chem. Eng., 60, 394, 10.1016/j.jtice.2015.10.041
Zhang, 2018, Iron triad nanomaterials and their sustainable application in the environment, Environ. Sci. Nano. The Royal Society of Chemistry, 11, 731
Zhao, 2016, Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: adsorption behavior and process study, Chem. Eng. J., 304, 737, 10.1016/j.cej.2016.07.003
Zhu, 2013, Naphthalimide-functionalized Fe3O4@SiO2 core/shell nanoparticles for selective and sensitive adsorption and detection of Hg2+, Chem. Eng. J., 219, 411, 10.1016/j.cej.2012.12.068