Removal of heavy metals present in water from the Yautepec River Morelos México, using Opuntia ficus-indica mucilage
Tài liệu tham khảo
Alexander, 2012, Chemical coagulation-based process for trace organic contaminant removal: current state and future potential, J. Environ. Manag., 111, 195, 10.1016/j.jenvman.2012.07.023
2008, Standard practice for coagulation-flocculation jar test of water
Awwad, 2014, Kinetics and thermodynamics of Cd(II) biosorption onto loquat (Eriobotrya japonica) leaves, J. Saudi Chem. Soc., 18, 486, 10.1016/j.jscs.2011.10.007
Bailón-Salas, 2018, Lead and copper removal from groundwater by spherical agglomeration using a biosurfactant extracted from Yucca decipiens Trel, Chemosphere, 20, 278, 10.1016/j.chemosphere.2018.05.103
Barakat, 2011, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem., 4, 361, 10.1016/j.arabjc.2010.07.019
Barka, 2013, Biosorption characteristics of cadmium and lead onto eco-friendly dried cactus (Opuntia ficus indica) cladodes, J. Environ. Chem. Eng., 1, 144, 10.1016/j.jece.2013.04.008
Belbahloul, 2015, Bioflocculants extraction from cactaceae and their application intreatment of water and wastewater, J. Water Process Eng., 7, 306, 10.1016/j.jwpe.2015.07.002
Camacho, 2011, Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA, Chemosphere, 83, 211, 10.1016/j.chemosphere.2010.12.067
Chong, 2010, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44, 2997, 10.1016/j.watres.2010.02.039
Choy, 2014, Utilization of plant-based natural coagulants as future alternatives towards sustainable water clarification, J. Environ. Sci., 26, 2178, 10.1016/j.jes.2014.09.024
Choy, 2015, A review on common vegetables and legumes as promising plant-based natural coagulants in water clarification, Int. J. Environ. Sci. Technol., 12, 367, 10.1007/s13762-013-0446-2
2016
Crini, 2005, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, Prog. Polym. Sci., 30, 38, 10.1016/j.progpolymsci.2004.11.002
Crini, 2019, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett., 17, 145, 10.1007/s10311-018-0785-9
Dai, 2018, Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review, Chemosphere, 211, 235, 10.1016/j.chemosphere.2018.06.179
Febriano, 2009, Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies, J. Hazard. Mater., 162, 616, 10.1016/j.jhazmat.2008.06.042
Fox, 2012, Removing heavy metals in water: the interaction of cactus mucilage and arsenate (As (V)), Environ. Sci. Technol., 46, 4553, 10.1021/es2021999
Fu, 2011, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manag., 92, 407, 10.1016/j.jenvman.2010.11.011
Gandhi, 2013, Biodepollution of paint manufacturing industry waste water containing chromium by using coagulation process, Int. Refeered Res. J., 4, 110
Haldar, 2020, MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: a review, Chemosphere, 251, 10.1016/j.chemosphere.2020.126388
Imran, 2019, Biosorption of Pb(II) from contaminated water onto Moringa oleifera biomass: kinetics and equilibrium studies, Int. J. Phytoremediation, 21, 777, 10.1080/15226514.2019.1566880
INEGI (Instituto Nacional de Estadística y Geografía), 2016. Territorio de México. México. Available at: http://cuentame.inegi.org.mx/territorio/agua/sobreexplota.aspx?tema=T. (Accessed on June 08, 2017).
Joseph, 2019, Removal of heavy metals from water sources in the developing world using low-cost materials: a review, Chemosphere, 229, 142, 10.1016/j.chemosphere.2019.04.198
Khotimchenko, 2017, Lead-binding capacity of calcium pectates with different molecular weight, Int. J. Biol. Macromol., 97, 526, 10.1016/j.ijbiomac.2017.01.065
Lasheen, 2012, Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: equilibrium and kinetic studies, Solid State Sci., 14, 202, 10.1016/j.solidstatesciences.2011.11.029
Miller, 2008, Toward understanding the efficacy and mechanism of Opuntia spp. as a natural coagulant for potential application in water treatment, Environ. Sci. Technol., 42, 4274, 10.1021/es7025054
Miretzky, 2008, Experimental binding of lead to a low cost on biosorbent: nopal (Opuntia streptacantha), Bioresour. Technol., 99, 1211, 10.1016/j.biortech.2007.02.045
Nguyen, 2013, Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater, Bioresour. Technol., 148, 574, 10.1016/j.biortech.2013.08.124
Nharingo, 2016, Application of Opuntia ficus-indica in bioremediation of wastewaters. A critical review, J. Environ. Manag., 166, 55, 10.1016/j.jenvman.2015.10.005
Nharingo, 2013, Equilibrium isotherm analysis of the biosorption of Zn2+ ions by acid treated Zea mays leaf powder, Int. J. Adv. Eng. Technol., 6, 128
Nharingo, 2015, Exploring the use of cactus Opuntia ficus indica in the biocoagulation–flocculation of Pb (II) ions from wastewaters, Int. J. Environ. Sci. Technol., 12, 3791, 10.1007/s13762-015-0815-0
NOM-127-SSA1-1994, 1995. Salud ambiental, agua para uso y consumo humano-límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. Ciudad de México, México. Available at: http://www.salud.gob.mx/unidades/cdi/nom/127s sa14.html. (Accessed on September 13, 2018).
NOM-230-SSA1-2002, 2005. Salud ambiental, agua para uso y consumo humano, requisitos sanitarios que se deben cumplir en los sistemas de abastecimiento públicos y privados durante el manejo del agua, procedimientos sanitarios para el muestreo. Ciudad de México, México. http://www.salud.gob.mx/unidades/cdi/nom/230ssa102.html. (Accessed on April 19, 2016).
Onditi, 2016, Removal of Pb2+ and Cd2+ from drinking water using polysaccharide extract isolated from cactus pads (Opuntia ficus indica), J. Appl. Polym. Sci., 133, 43913, 10.1002/app.43913
Pritchard, 2009, Potential of using plant extracts for purification of shallow well water in Malawi, Phys. Chem. Earth, 34, 799, 10.1016/j.pce.2009.07.001
Renault, 2009, Chitosan for coagulation/flocculation processes – an eco-friendly approach, Eur. Polym. J., 45, 1337, 10.1016/j.eurpolymj.2008.12.027
Rodríguez-González, 2021, Influence of age on molecular characteristics and rheological behavior of nopal mucilage, Food Sci. Nutr., 9, 6776, 10.1002/fsn3.2629
Shanbehzadeh, 2014, Heavy metals in water and sediment: a case study of Tembi River, J. Environ. Public Health, 10.1155/2014/858720
Singh, 2011, Heavy metals and living systems: an overview, Indian J. Pharmacol., 43, 246, 10.4103/0253-7613.81505
Sun, 2018, Occurrence, spatial distribution, and seasonal variation of emerging trace organic pollutants in source water for Shanghai, China, Sci. Total Environ., 639, 1, 10.1016/j.scitotenv.2018.05.089
Tchounwou, 2012, Heavy metals toxicity and the environment, Vol. 3, 133
Vargas-Solano, S.V., Rodríguez-González, F., Arenas-Ocampo, M.L., Martínez-Velarde, R., Sujitha, S.B., Jonathan, M.P., 2019. Heavy metals in the volcanic and peri-urban terrain Watershed of the River Yautepec, Mexico. Environ. Monit. Assess 2021 191, 187-201. 10.1007/s10661-019-7300-z.
Vijaya, 2009, Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption, Carbohydr. Polym., 72, 261, 10.1016/j.carbpol.2007.08.010
2011
Yin, 2010, Emerging usage of plant-based coagulants for water and wastewater treatment, Process Biochem., 45, 1437, 10.1016/j.procbio.2010.05.030
Young, 2006, The Mexican cactus as a new environmentally benign material for the removal of contaminants in drinking water, Mater. Res. Soc. Symp. Proc., 930, 10.1557/PROC-0930-JJ01-01
Zhang, 2006, A preliminary study on cactus as coagulant in water treatment, Process Biochem., 41, 730, 10.1016/j.procbio.2005.08.016