Loại bỏ Cr(VI) từ dung dịch nước bằng cách sử dụng ống nano polymer

Journal of Materials Science - Tập 55 - Trang 163-176 - 2019
Sheng Yu1, Guoming Yuan1, Hejun Gao1,2, Yunwen Liao1,2
1Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
2Institute of Applied Chemistry, China West Normal University, Nanchong, China

Tóm tắt

Các ống nano polymer tự lắp ráp được thu được thông qua phương pháp solvothermal đơn giản. Các tính chất lý hóa của chúng đã được xác định thông qua các kỹ thuật SEM, BET, TGA, FT-IR, XPS và cộng hưởng từ hạt nhân 13C trạng thái rắn. Các yếu tố như pH ban đầu, liều lượng và các ion đồng tồn tại đã được đánh giá để kiểm tra hiệu suất hấp phụ Cr(VI). Kết quả cho thấy bề mặt ống nano polymer chứa một lượng lớn các nhóm chức hữu cơ và cấu trúc xốp. Trong dung dịch Cr(VI) nồng độ 140 mg/L, ống nano polymer đạt được khả năng hấp phụ Cr(VI) lớn nhất là 147,81 mg/g. Động học hấp phụ và các đồng thể hiện tâm đã đồng nhất với mô hình giả bậc hai và mô hình Redlich–Peterson, tương ứng. Quá trình desorption cho thấy rằng các ống nano polymer dễ dàng tái sinh trong dung dịch có độ phân cực mạnh và có hiệu quả loại bỏ cao. Độ mạnh ion đóng vai trò quan trọng trong quá trình hấp phụ và tương tác hấp phụ bao gồm tương tác tĩnh điện, khử và chelation trong nghiên cứu này. Phương pháp tự lắp ráp sẽ tạo ra một chất hấp phụ có hiệu quả cao.

Từ khóa

#Cr(VI) #ống nano polymer #hấp phụ #động học hấp phụ #mô hình Redlich–Peterson.

Tài liệu tham khảo

Wu Y, Pang H, Liu Y et al (2019) Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environ Pollut 246:608–620. https://doi.org/10.1016/j.envpol.2018.12.076 Valentín-Reyes J, García-Reyes RB, García-González A, Soto-Regalado E, Cerino-Córdova F (2019) Adsorption mechanisms of hexavalent chromium from aqueous solutions on modified activated carbon. J Environ Manag 236:815–822. https://doi.org/10.1016/j.jenvman.2019.02.014 Zheng W, An Q, Lei Z, Xiao Z, Zhai S, Liu Q (2016) Efficient batch and column removal of Cr(VI) by carbon beads with developed nano-network. RSC Adv 6:104897–104910. https://doi.org/10.1039/c6ra14070j Vakili M, Deng S, Li T, Wang W, Wang W, Yu G (2018) Novel crosslinked chitosan for enhanced adsorption of hexavalent chromium in acidic solution. Chem Eng J 347:782–790. https://doi.org/10.1016/j.cej.2018.04.181 Khan SU, Islam DT, Farooqi IH, Ayub S, Basheer F (2019) Hexavalent chromium removal in an electrocoagulation column reactor: process optimization using CCD, adsorption kinetics and pH modulated sludge formation. Process Saf Environ Prot 122:118–130. https://doi.org/10.1016/j.psep.2018.11.024 Zhang L, Xia W, Liu X, Zhang W (2015) Synthesis of titanium cross-linked chitosan composite for efficient adsorption and detoxification of hexavalent chromium from water. J Mater Chem A 3:331–340. https://doi.org/10.1039/c4ta05194g GilPavas E, Dobrosz-Gómez I, Gómez-García M-Á (2019) Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment. Sci Total Environ 651:551–560. https://doi.org/10.1016/j.scitotenv.2018.09.125 Ge G, Yuanlai X, Xinxin Y et al (2017) Effect of HNO3 concentration on a novel silica-based adsorbent for separating Pd(II) from simulated high level liquid waste. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-11879-6 Zheng X, Yu N, Wang X et al (2018) Adsorption properties of granular activated carbon-supported titanium dioxide particles for dyes and copper ions. Sci Rep 8:6463. https://doi.org/10.1038/s41598-018-24891-1 Peng X, Gao F, Zhao J, Li J, Qu J, Fan H (2018) Self-assembly of a graphene oxide/MnFe2O4 motor by coupling shear force with capillarity for removal of toxic heavy metals. J Mater Chem A 6:20861–20868. https://doi.org/10.1039/c8ta06663a Shah LA, Khan M, Javed R et al (2018) Superabsorbent polymer hydrogels with good thermal and mechanical properties for removal of selected heavy metal ions. J Clean Prod 201:78–87. https://doi.org/10.1016/j.jclepro.2018.08.035 Zhan Y, He S, Wan X et al (2018) Easy-handling bamboo-like polypyrrole nanofibrous mats with high adsorption capacity for hexavalent chromium removal. J Colloid Interface Sci 529:385–395. https://doi.org/10.1016/j.jcis.2018.06.033 Ko D, Mines PD, Jakobsen MH, Yavuz CT, Hansen HCB, Andersen HR (2018) Disulfide polymer grafted porous carbon composites for heavy metal removal from stormwater runoff. Chem Eng J 348:685–692. https://doi.org/10.1016/j.cej.2018.04.192 Zhao G, Huang X, Tang Z, Huang Q, Niu F, Wang X (2018) Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polym Chem 9:3562–3582. https://doi.org/10.1039/c8py00484f Tang WJ, Wu Y, Gao TT, Wei YQ, Zhou GW (2018) Facile preparation of hybrid porous polyanilines for highly efficient Cr(VI) removal. RSC Adv 8:33217–33227. https://doi.org/10.1039/c8ra07026a Tu T, Assenmacher W, Peterlik H, Schnakenburg G, Dötz KH (2008) Pyridine-bridged benzimidazolium salts: synthesis, aggregation, and application as phase-transfer catalysts. Angew Chem Int Ed 47:7127–7131. https://doi.org/10.1002/anie.200801628 Yang Z, Ren L, Jin L et al (2018) In-situ functionalization of poly(m-phenylenediamine) nanoparticles on bacterial cellulose for chromium removal. Chem Eng J 344:441–452. https://doi.org/10.1016/j.cej.2018.03.086 Chen X, Huang Y, Zhang K, Feng X, Wang M (2017) Synthesis and high-performance of carbonaceous polypyrrole nanotubes coated with SnS2 nanosheets anode materials for lithium ion batteries. Chem Eng J 330:470–479. https://doi.org/10.1016/j.cej.2017.07.180 Fellenz N, Perez-Alonso FJ, Martin PP et al (2017) Chromium (VI) removal from water by means of adsorption–reduction at the surface of amino-functionalized MCM-41 sorbents. Microporous Mesoporous Mater 239:138–146. https://doi.org/10.1016/j.micromeso.2016.10.012 Shao L, Wang S, Liu M, Huang J, Liu Y-N (2018) Triazine-based hyper-cross-linked polymers derived porous carbons for CO2 capture. Chem Eng J 339:509–518. https://doi.org/10.1016/j.cej.2018.01.145 Li B, Guan Z, Wang W et al (2012) Highly dispersed Pd catalyst locked in knitting aryl network polymers for Suzuki–Miyaura coupling reactions of aryl chlorides in aqueous media. Adv Mater 24:3390–3395. https://doi.org/10.1002/adma.201200804 Balaban A, Dinculescu A, Elguero J, Faure R (1985) Carbon-13 NMR studies of primary amines and their corresponding 2,4,6-trimethyl-pyridinium salts. Magn Reson Chem 23:553–558 Xu C, Wang H, Wang Q, Wang Y, Zhang Y, Fan G (2019) Ruthenium coordinated with triphenylphosphine-hyper-crosslinked polymer: an efficient catalyst for hydrogen evolution reaction and hydrolysis of ammonia borane. Appl Surf Sci 466:193–201. https://doi.org/10.1016/j.apsusc.2018.10.051 Zhang S, Wang X, Li J, Wen T, Xu J, Wang X (2014) Efficient removal of a typical dye and Cr(VI) reduction using N-doped magnetic porous carbon. RSC Adv 4:63110–63117. https://doi.org/10.1039/C4RA10189H Sun X, Yang L, Xing H et al (2013) Synthesis of polyethylenimine-functionalized poly (glycidyl methacrylate) magnetic microspheres and their excellent Cr(VI) ion removal properties. Chem Eng J 234:338–345. https://doi.org/10.1016/j.cej.2013.08.082 Gao H, Du J, Liao Y (2019) Removal of chromium (VI) and orange II from aqueous solution using magnetic polyetherimide/sugarcane bagasse. Cellulose 26:3285–3297. https://doi.org/10.1007/s10570-019-02301-7 Huang J, Liu Y, Wang X (2008) Selective adsorption of tannin from flavonoids by organically modified attapulgite clay. J Hazard Mater 160:382–387. https://doi.org/10.1016/j.jhazmat.2008.03.008 Setyono D, Valiyaveettil S (2015) Functionalized paper—a readily accessible adsorbent for removal of dissolved heavy metal salts and nanoparticles from water. J Hazard Mater 302:120–128. https://doi.org/10.1016/j.jhazmat.2015.09.046 Du J, Zhang L, Gao H, Liao Y (2017) Removal of methylene blue from aqueous solutions using poly(AA-co-DVB). J Dispers Sci Technol 38:1489–1494. https://doi.org/10.1080/01932691.2016.1255955 Deng L, Shi Z, Wang L, Zhou S (2017) Fabrication of a novel NiFe2O4/Zn-Al layered double hydroxide intercalated with EDTA composite and its adsorption behavior for Cr(VI) from aqueous solution. J Phys Chem Solids 104:79–90. https://doi.org/10.1016/j.jpcs.2016.12.030 Liu X, Liao Y, Gao H (2018) Enhancement adsorption of hexavalent chromium from aqueous solution on polypyrrole using ethylamine group. J Dispers Sci Technol 39:1394–1402. https://doi.org/10.1080/01932691.2017.1404917 Terangpi P, Chakraborty S, Ray M (2018) Improved removal of hexavalent chromium from 10 mg/L solution by new micron sized polymer clusters of aniline formaldehyde condensate. Chem Eng J 350:599–607. https://doi.org/10.1016/j.cej.2018.05.171 Dautoo UK, Shandil Y, Chauhan GS (2017) New crosslinked hydrazide–based polymers as Cr(VI) ions adsorbents. J Environ Chem Eng 5:5815–5826. https://doi.org/10.1016/j.jece.2017.10.041 Khare P, Yadav A, Ramkumar J, Verma N (2016) Microchannel-embedded metal–carbon–polymer nanocomposite as a novel support for chitosan for efficient removal of hexavalent chromium from water under dynamic conditions. Chem Eng J 293:44–54. https://doi.org/10.1016/j.cej.2016.02.049 Preethi J, Vigneshwaran S, Meenakshi S (2019) Performance of chitosan engraved iron and lanthanum mixed oxyhydroxide for the detoxification of hexavalent chromium. Int J Biol Macromol 130:491–498. https://doi.org/10.1016/j.ijbiomac.2019.02.101 Rangabhashiyam S, Balasubramanian P (2018) Adsorption behaviors of hazardous methylene blue and hexavalent chromium on novel materials derived from Pterospermum acerifolium shells. J Mol Liq 254:433–445. https://doi.org/10.1016/j.molliq.2018.01.131 Mthombeni NH, Onyango MS, Aoyi O (2015) Adsorption of hexavalent chromium onto magnetic natural zeolite-polymer composite. J Taiwan Inst Chem Eng 50:242–251. https://doi.org/10.1016/j.jtice.2014.12.037 Kahu SS, Shekhawat A, Saravanan D, Jugade RM (2016) Two fold modified chitosan for enhanced adsorption of hexavalent chromium from simulated wastewater and industrial effluents. Carbohydr Polym 146:264–273. https://doi.org/10.1016/j.carbpol.2016.03.041 Zhang Y, Chen B, Zhang L et al (2011) Controlled assembly of Fe3O4 magnetic nanoparticles on graphene oxide. Nanoscale 3:1446–1450. https://doi.org/10.1039/c0nr00776e Zhang L, Gao H, Liao Y (2016) Preparation and application of poly(AMPS-co-DVB) to remove Rhodamine B from aqueous solutions. React Funct Polym 104:53–61. https://doi.org/10.1016/j.reactfunctpolym.2016.05.001 Wang H, Yuan X, Wu Y et al (2015) Facile synthesis of polypyrrole decorated reduced graphene oxide–Fe3O4 magnetic composites and its application for the Cr(VI) removal. Chem Eng J 262:597–606. https://doi.org/10.1016/j.cej.2014.10.020