Removable singularities of solutions of second-order parabolic equations
Tài liệu tham khảo
D. G. Aronson, “Removable singularities for linear parabolic equations,” Arch. Rat. Mech. Anal.,17, 79–84 (1964).
D. E. Edmunds and L. A. Peletier, “Removable singularities of solutions of quasilinear parabolic equations,” J. London Math. Soc. (2),2, 273–283 (1970).
R. Gariepy and W. P. Ziemer, “Removable sets for parabolic equations,” J. London Math. Soc. (2),21, 311–318 (1980).
L. M. R. Saraiva, “Removable singularities and quasi-linear parabolic equations,” Proc. London Math. Soc.,48, No. 3, 385–400 (1984).
L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand, London (1967).
V. A. Kondrat'ev, “On the solvability of the first boundary-value problem for strongly elliptic equations,” Tr. Mosk. Mat. Obshch.,16, 293–318 (1967).
Yu. V. Egorov, “On removable singularities and boundary conditions for differential equations,” Vestn. Mosk. Gos. Univ., No. 6, 30–36 (1985).
V. G. Maz'ya and V. P. Khavin, “Application of (p,l)-capacity to some problems of the theory of exceptional sets,” Mat. Sb.,90, No. 4, 558–591 (1973).
H. M. Landis, “On inessential sets for the Dirichlet problem,” Usp. Mat. Nauk,34, No. 4, 197–198 (1979).
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasi-Linear Equations of Parabolic Type [in Russian], Nauka, Moscow (1967).
E. M. Landis, Second-Order Equations of Elliptic and Parabolic Types [in Russian], Nauka, Moscow (1971).
W. Kaiser and B. Müller, “Removable sets for the heat equation,” Vestn. Mosk. Gos. Univ., No. 5, 26–32 (1973).
J. Nash, “Continuity of solutions of parabolic and elliptic equations,” Am. J. Math.,80, 931–954 (1958).
D. G. Aronson, “Bounds for fundamental solutions of parabolic equations,” Bull. Am. Math. Soc.,73, 890–896 (1967).
J. Král, “On singularities of solutions of partial differential equations,” Tr. Sem. S. L. Soboleva, Akad. Nauk SSSR, Sib. Otd., Inst. Mat., No. 1, 78–89 (1983).
Yu. A. Alkhutov, “Removable singularities of solutions of parabolic equations,” Usp. Mat. Nauk,43, No. 1, 189–190 (1988).
J. Moser, “Harnack inequality for parabolic differential equations,” Comm. Pure Appl. Math.,17, 101–134 (1964).